SUMMARY REPORT
494 DAHLIA DRIVE (FORMERLY 629 DAHLIA DRIVE)
LAUREL BAY MILITARY HOUSING AREA
MARINE CORPS AIR STATION BEAUFORT
BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095 SUMMARY REPORT
494 DAHLIA DRIVE (FORMERLY 629 DAHLIA DRIVE)
LAUREL BAY MILITARY HOUSING AREA
MARINE CORPS AIR STATION BEAUFORT
BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016

CTO WE52

JUNE 2021

Table of Contents

1.0	INTRODUC	TION	1					
1.1 1.2		Background Information						
2.0	SAMPLING	ACTIVITIES AND RESULTS	3					
2.1 2.2		VAL AND SOIL SAMPLING						
3.0	PROPERTY	STATUS	4					
4.0	REFERENC	ES	4					
Table	1	Table Laboratory Analytical Results - Soil						
		Appendices						
Appen Appen Appen	dix B	Multi-Media Selection Process for LBMH UST Assesment Report Regulatory Correspondence						

Summary Report 494 Dahlia Drive (Formerly 629 Dahlia Drive) Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort June 2021

List of Acronyms

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CTO Contract Task Order

COPC constituents of potential concern

IDIQ Indefinite Delivery, Indefinite Quantity

IGWA Initial Groundwater Assessment

JV Joint Venture

LBMH Laurel Bay Military Housing MCAS Marine Corps Air Station

NAVFAC Mid-Lant Naval Facilities Engineering Command Mid-Atlantic

NFA No Further Action

PAH polynuclear aromatic hydrocarbon

QAPP Quality Assurance Program Plan

RBSL risk-based screening level

SCDHEC South Carolina Department of Health and Environmental Control

Site LBMH area at MCAS Beaufort, South Carolina

UST underground storage tank

VISL vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 494 Dahlia Drive (Formerly 629 Dahlia Drive). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan* (QAPP) for the Underground Storage Tank Management Division, Revision 3.1 (SCDHEC, 2016) and the Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service, (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Division (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 494 Dahlia Drive (Formerly 629 Dahlia Drive). Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 629 Dahlia Drive* (MCAS Beaufort, 2013). The UST Assessment Report is provided in Appendix B.

2.1 UST Removal and Soil Sampling

On January 17, 2013, a single 280 gallon heating oil UST was removed from the concrete porch area at 494 Dahlia Drive (Formerly 629 Dahlia Drive). The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). The UST was removed and properly disposed of (i.e., shipped offsite for recycling or transported to a landfill). There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Report (Appendix B), the depth to the base of the UST was

6'0" bgs and a single soil sample was collected from that depth. The sample was collected from the fill port side of the former UST to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of the excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data report is included in the UST Assessment Report presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 494 Dahlia Drive (Formerly 629 Dahlia Drive) were less than the SCDHEC RBSLs, which indicated the subsurface was not impacted by COPCs associated with the former UST at concentrations that presented a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Based on the analytical results for soil, SCDHEC made the determination that NFA was required for 494 Dahlia Drive (Formerly 629 Dahlia Drive). This NFA determination was obtained in a letter dated May 15, 2014. SCDHEC's NFA letter is provided in Appendix C.

4.0 REFERENCES

Marine Corps Air Station Beaufort, 2013. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report – 629 Dahlia Drive, Laurel Bay Military Housing Area, June 2013.

South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.

- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations*, March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, March 2018.

Table

Table 1 Laboratory Analytical Results - Soil 494 Dahlia Drive (Formerly 629 Dahlia Drive)

Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	SCDHEC RBSLs (1)	Results Sample Collected 01/17/13					
Volatile Organic Compounds Analyzed by EPA Method 8260B (mg/kg)							
Benzene	0.003	ND					
Ethylbenzene	1.15	ND					
Naphthalene	0.036	ND					
Toluene	0.627	0.00103					
Xylenes, Total	13.01	ND					
Semivolatile Organic Compounds Anal	yzed by EPA Method 8270D (mg/kg)						
Benzo(a)anthracene	0.66	ND					
Benzo(b)fluoranthene	0.66	ND					
Benzo(k)fluoranthene	0.66	ND					
Chrysene	0.66	ND					
Dibenz(a,h)anthracene	0.66	ND					

Notes:

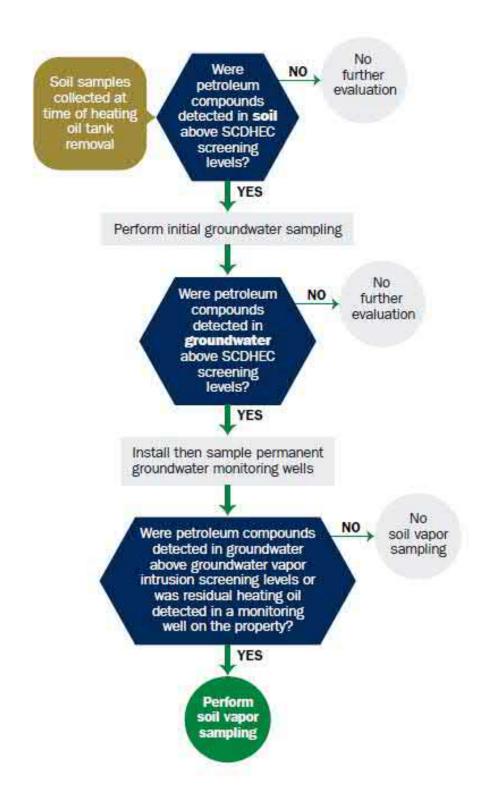
Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligram per kilogram

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The laboratory report is provided in Appendix B.


RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 2.0 (SCDHEC, April 2013).

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Report

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

MCAS Beaufort, Commanding Officer Attn: NREAO (Craig Ehde) Owner Name (Corporation, Individual, Public Agency, Other)							
P.O. Box 55001 Mailing Address							
_Beaufort,	South Carolina	29904-5001					
City	State	Zip Code					
843	228-7317	Craiq Ehde					
Area Code	Telephone Number	Contact Person	_				
1							

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. #						
	Military Housing Area,	Marine Cor	ps Air	Station,	Beaufort,	sc
	Company Site Identifier		_		•	
	Drive, Laurel Bay Mili State Road (as applicable)	tary Housin	ng Area			·
Beaufort,	Beaufort					
City	County					

Attachment 2

III. INSURANCE INFORMATION

Insurance Statement
The petroleum release reported to DHEC on at Permit ID Number may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.
Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES NO (check one)
If you answered YES to the above question, please complete the following information:
My policy provider is: The policy deductible is: The policy limit is:
If you have this type of insurance, please include a copy of the policy with this report.
IV. REQUEST FOR SUPERB FUNDING I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)
V. CERTIFICATION (To be signed by the UST owner)
I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.
Name (Type or print.)
Name (Type or print.) Signature
Signature
Signature To be completed by Notary Public:

VI. UST IN	FORMATION		
VI. CSI II		629Dahlia	
		Heating oil	
Product(ex. Ga	s, Kerosene)	3	
Capacity(ex. 1k	z, 2k)	280 gal	
Age		Late 1950s	
Construction Mat	erial(ex. Steel, FRP)	Steel	
Month/Year of La	ast Use	Mid 1980s	
Depth (ft.) To Ba	se of Tank	6'	
Spill Prevention I	Equipment Y/N	No	
Overfill Prevention	on Equipment Y/N	No	
Method of Closur	re Removed/Filled	Removed	
Date Tanks Remo	oved/Filled	1/17/2013	
Visible Corrosior	or Pitting Y/N	Yes	
Visible Holes	Y/N	Yes	
-	· ·	om the ground (attach disposal manifes m the ground and disposed a	•
	O" landfill. See At		ac a
disposal manifest	s)	sludges, or wastewaters removed from usly filled with sand by o	,
551 525Daii.	ria naa been previo	ably lilled with band by O	CIICI D.
		ed, describe the location and extent for were found throughout the	

VII. PIPING INFORMATION

	629Dahlia
	Steel
Construction Material(ex. Steel, FRP)	& Copper
Distance from UST to Dispenser	M \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Number of Dispensers	N/A
Type of System Pressure or Suction	Suction
Was Piping Removed from the Ground? Y/	N No
Visible Corrosion or Pitting Y/N	Yes Yes
Visible Holes Y/N	No
Age	Late 1950s
	erved, describe the location and extent for each piping run.
Corrosion and pitting were	found on the surface of the steel vent
pipe. Copper supply and retu	
	·
VIII. BRIEF SITE DE	ESCRIPTION AND HISTORY
The USTs at the residences a	re constructed of single wall steel
and formerly contained fuel	oil for heating. These USTs were
installed in the late 1950s	and last used in the mid 1980s.

IX. SITE CONDITIONS

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map.		Х	
B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells?		Х	
If yes, indicate location on site map and describe the odor (strong, mild, etc.)			
C. Was water present in the UST excavation, soil borings, or trenches?		Х	
If yes, how far below land surface (indicate location and depth)? D. Did conteminated soils remain steelspiled on site offer closure?		X	
D. Did contaminated soils remain stockpiled on site after closure? If yes, indicate the stockpile location on the site map.		Λ	
Name of DHEC representative authorizing soil removal:			
E. Was a petroleum sheen or free product detected on any excavation or boring waters?		X	
If yes, indicate location and thickness.	:		

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

B.

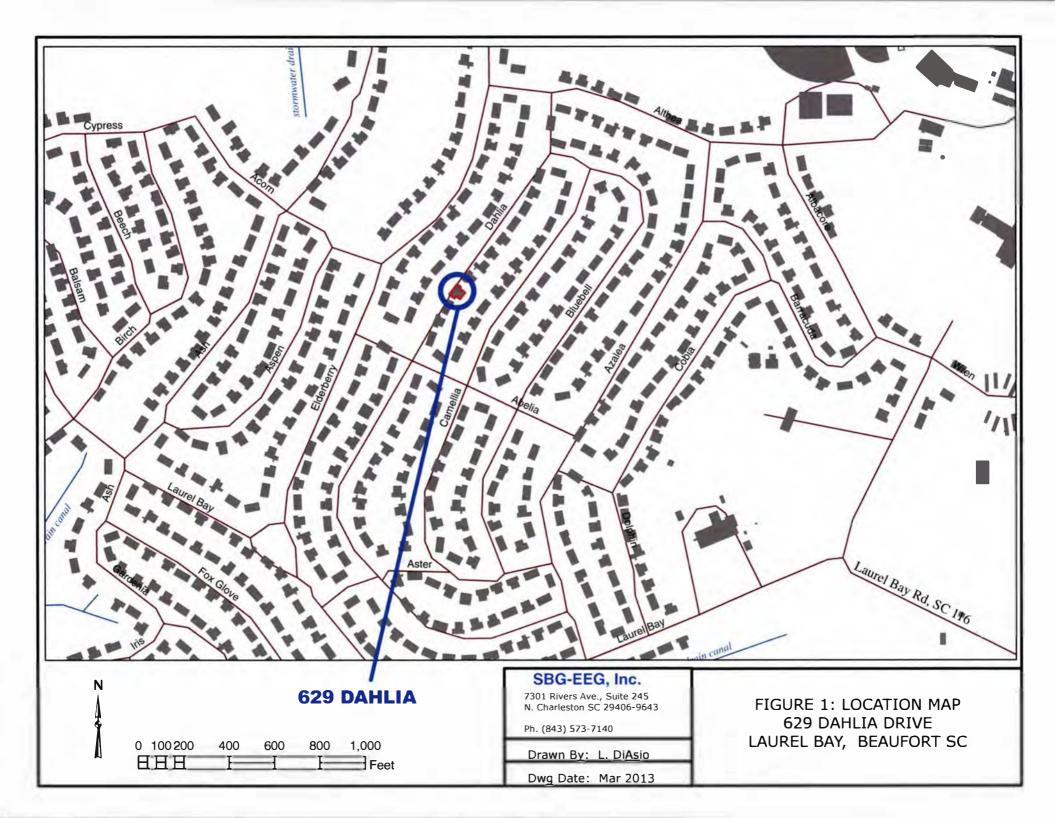
Sample #	Location	Sample Type	Soil Type	Depth*	Date/Time of	Collected	OVA#
		(Soil/Water)	(Sand/Clay)		Collection	by	
629 Dahlia	Excav at fill end	Soil	Sandy	6'	1/17/13 1150 hrs	P. Shaw	
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

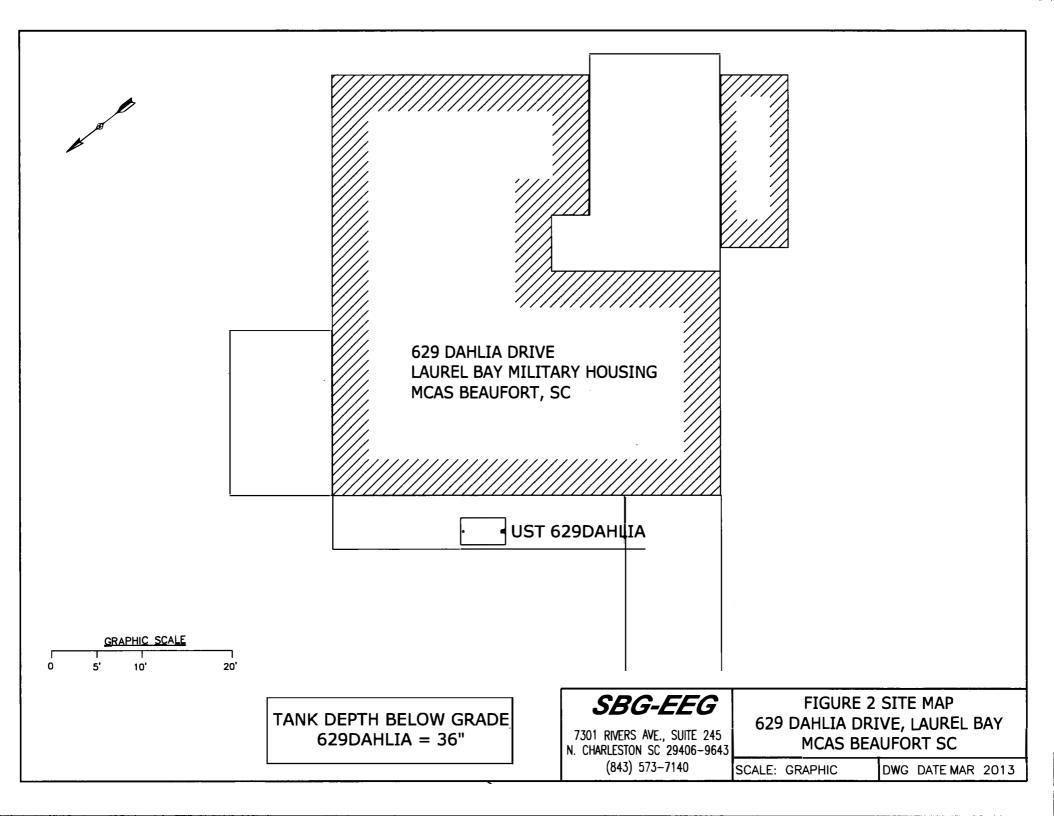
^{* =} Depth Below the Surrounding Land Surface

XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280
and SC DHEC Assessment Guidelines. Sample containers were prepared by the
testing laboratory. The grab method was utilized to fill the sample
containers leaving as little head space as possible and immediately
capped. Soil samples were extracted from area below tank. The
samples were marked, logged, and immediately placed in a sample cooler
packed with ice to maintain an approximate temperature of 4 degrees
Centigrade. Tools were thoroughly cleaned and decontaminated with
the seven step decon process after each use. The samples remained in
custody of SBG-EEG, Inc. until they were transferred to Test America
Incorporated for analysis as documented in the Chain of Custody Record.


XII. RECEPTORS


		Yes	No
A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?		Х
	If yes, indicate type of receptor, distance, and direction on site map.		
В.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		Х
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		Х
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination? *Sewer, water, electrici	*X	
	cable, fiber optic & geo If yes, indicate the type of utility, distance, and direction on the site map.	therm	al
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		Х
	If yes, indicate the area of contaminated soil on the site map.		


XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 629Dahlia.

Picture 2: UST 629Dahlia excavation.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

CoC UST	629Dahlia			 	T
CoC UST	029Daiii1a		-		-
Benzene	ND			 	
Toluene	0.00103 mg/k	a			
Ethylbenzene	ND				
Xylenes	ND				
Naphthalene	ND				
Benzo (a) anthracene	ND				
Benzo (b) fluoranthene	ND_				
Benzo (k) fluoranthene	ND				
Chrysene	ND				
Dibenz (a, h) anthracene	N D				
TPH (EPA 3550)					
СоС				 	
Benzene					
Toluene					
Ethylbenzene					
Xylenes					
Naphthalene					
Benzo (a) anthracene					
Benzo (b) fluoranthene					
Benzo (k) fluoranthene					
Chrysene					
Dibenz (a, h) anthracene					
TPH (EPA 3550)					

SUMMARY OF ANALYSIS RESULTS (cont'd)
Enter the ground water analytical data for each sample for all CoC in the table below. If free product

10	nrecent	indicate	the measured	thickness to	the nearest 0.01 fe	et
10	present,	maicate	tile illeasurea	unickness to	the mearest 0.01 fe	Ct.

CoC	RBSL	W-1	W-2	W -3	W -4
	(µg/l)				
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
мтве	40				
Naphthalene	25				_
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10			:	
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				_
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-17778-1

TestAmerica SDG: Laurel Bay Housing Project

Client Project/Site: EEG Default

For:

Environmental Enterprise Group 10179 Highway 78 Ladson, South Carolina 29456

Attn: Mr. Tom McElwee

Kuth Hay

Authorized for release by: 1/31/2013 11:14:00 AM

Ken Hayes Project Manager I

ken.hayes@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

5

7

8

10

12

Client: Environmental Enterprise Group Project/Site: EEG Default

TestAmerica Job ID: 490-17778-1 SDG: Laurel Bay Housing Project

Table of Contents

Cover Page	1
•	
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	13
QC Association	20
Chronicle	22
Method Summary	24
Certification Summary	25
Chain of Custody	
Receipt Checklists	

Sample Summary

Client: Environmental Enterprise Group

Project/Site: EEG Default

TestAmerica Job ID: 490-17778-1 SDG: Laurel Bay Housing Project

3

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-17778-1	380 Aspen	Solid	01/14/13 14:15 0	1/23/13 08:20
490-17778-2	646 Dahlia-a	Solid	01/15/13 13:50 0	1/23/13 08:20
490-17778-3	634 Dahlia	Solid	01/16/13 11:20 0	1/23/13 08:20
490-17778-4	629 Dahlia	Solid	01/17/13 11:50 0	1/23/13 08:20
490-17778-5	635 Dahlia-1	Solid	01/15/13 13:45 0	1/23/13 08:20
490-17778-6	635 Dahlia-2	Solid	01/16/13 11:45 0	1/23/13 08:20
490-17778-7	628 Dahlia	Solid	01/17/13 13:45 0	1/23/13 08:20

3

4

<u>.</u>

6

7

8

9

10

10

13

Case Narrative

Client: Environmental Enterprise Group

Project/Site: EEG Default

TestAmerica Job ID: 490-17778-1 SDG: Laurel Bay Housing Project

Job ID: 490-17778-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-17778-1

Comments

No additional comments

Receipt

The samples were received on 1/23/2013 8:20 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.5° C.

GC/MS VOA

Method(s) 8260B: Surrogate recovery for the following sample(s) was outside control limits: 380 Aspen (490-17778-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8260B: Surrogate recovery for the following sample(s) was outside control limits: 646 Dahlia-a (490-17778-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8260B: Surrogate recovery for the following sample(s) was outside control limits: 635 Dahlia-2 (490-17778-6). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8260B: Due to sample matrix effect on the internal standard (ISTD), a dilution was required for the following sample(s): 635 Dahlia-2 (490-17778-6).

Method(s) 8260B: Due to sample matrix effect on the internal standard (ISTD), a dilution was required for the following sample(s): 380 Aspen (490-17778-1).

Method(s) 8260B: The following sample(s) required a dilution which was performed outside of the analytical holding time: 380 Aspen (490-17778-1).

Method(s) 8260B: The following sample(s) was diluted due to the nature of the sample matrix: 635 Dahlia-2 (490-17778-6). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 54052.

Method(s) 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 54278.

Method(s) 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 54600.

No other analytical or quality issues were noted.

GC/MS Semi VOA

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

No analytical or quality issues were noted.

Definitions/Glossary

Client: Environmental Enterprise Group

Project/Site: EEG Default

TestAmerica Job ID: 490-17778-1 SDG: Laurel Bay Housing Project

-

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
X	Surrogate is outside control limits
Н	Sample was prepped or analyzed beyond the specified holding time
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
E	Result exceeded calibration range.

Glossary

PQL

QC

RER

RPD TEF

TEQ

RL

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Quality Control

Relative error ratio

Abbreviation	These commonly used abbreviations may or may not be present in this report.
ā	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDA	Minimum detectable activity
MDC	Minimum detectable concentration
MDL	Method Detection Limit
/ L	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)

Client Sample Results

Client: Environmental Enterprise Group

Project/Site: EEG Default

Percent Solids

TestAmerica Job ID: 490-17778-1 SDG: Laurel Bay Housing Project

Lab Sample ID: 490-17778-1

Matrix: Solid

Percent Solids: 77.5

Client Sample ID: 380 Asper
Date Collected: 01/14/13 14:15
Date Received: 01/23/13 08:20

Method: 8260B - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00244	0.000817	mg/Kg	¤	01/24/13 07:28	01/26/13 19:28	
Ethylbenzene	0.517	H	0.164	0.0556	mg/Kg	n	01/24/13 07:26	01/29/13 09:56	1
Naphthalene	14.3	Н	0.409	0.139	mg/Kg	305	01/24/13 07:26	01/29/13 09:56	- 1
Toluene	0.00248		0.00244	0.000902	mg/Kg	₽	01/24/13 07:28	01/26/13 19:28	- 3
Xylenes, Total	1.39		0.00610	0.000817	mg/Kg	n	01/24/13 07:28	01/26/13 19:28	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	99		70 - 130				01/24/13 07:28	01/26/13 19:28	
1,2-Dichloroethane-d4 (Surr)	83		70 - 130				01/24/13 07:26	01/29/13 09:56	
4-Bromofluorobenzene (Surr)	968	X	70 - 130				01/24/13 07:28	01/26/13 19:28	
4-Bromofiluorobenzene (Surr)	110		70 - 130				01/24/13 07:26	01/29/13 09:56	19
Dibromofluoromethane (Surr)	95		70 - 130				01/24/13 07:28	01/26/13 19:28	- 9
Dibromofluoromethane (Surr)	89		70 - 130				01/24/13 07:26	01/29/13 09:56	- 8
Toluene-d8 (Surr)	174	X	70 - 130				01/24/13 07:28	01/26/13 19:28	i i
Toluene-d8 (Surr)	93		70 - 130				01/24/13 07:26	01/29/13 09:56	
Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS	S)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	ND		0.0855	0.0128	mg/Kg	n	01/24/13 08:53	01/24/13 18:58	- 7
Acenaphthylene	0.149		0.0855	0.0115	mg/Kg	¤	01/24/13 08:53	01/24/13 18:58	- 3
Anthracene	0.336		0.0855	0.0115	mg/Kg	¤	01/24/13 08:53	01/24/13 18:58	- 3
Benzo[a]anthracene	0.574		0.0855	0.0191	mg/Kg	n	01/24/13 08:53	01/24/13 18:58	- 1
Benzo[a]pyrene	0.241		0.0855	0.0153	mg/Kg	125	01/24/13 08:53	01/24/13 18:58	3
Benzo[b]fluoranthene	0.390		0.0855	0.0153	mg/Kg	n	01/24/13 08:53	01/24/13 18:58	
Benzo[g,h,i]perylene	0.0727	J	0.0855	0.0115	mg/Kg	¤	01/24/13 08:53	01/24/13 18:58	
Benzo[k]fluoranthene	0.159		0.0855	0.0179	mg/Kg	¤	01/24/13 08:53	01/24/13 18:58	
1-Methylnaphthalene	5.95		0.428	0.0894	mg/Kg	¤	01/24/13 08:53	01/25/13 18:27	
Pyrene	1.26		0.0855	0.0153	mg/Kg	¤	01/24/13 08:53	01/24/13 18:58	
Phenanthrene	2.49		0.0855	0.0115	mg/Kg	¤	01/24/13 08:53	01/24/13 18:58	3
Chrysene	0.502		0.0855	0.0115	mg/Kg	¤	01/24/13 08:53	01/24/13 18:58	- 1
Dibenz(a,h)anthracene	ND		0.0855	0.00894	mg/Kg	₩	01/24/13 08:53	01/24/13 18:58	- 5
Fluoranthene	1.54		0.0855	0.0115	mg/Kg	¤	01/24/13 08:53	01/24/13 18:58	9
Fluorene	0.922		0.0855	0.0153	mg/Kg	Ħ	01/24/13 08:53	01/24/13 18:58	3
Indeno[1,2,3-cd]pyrene	0.0721	J	0.0855	0.0128	mg/Kg	n	01/24/13 08:53	01/24/13 18:58	
Naphthalene	1.16		0.0855	0.0115	mg/Kg	¤	01/24/13 08:53	01/24/13 18:58	
2-Methylnaphthalene	8.90		0.428	0.102	mg/Kg	¤	01/24/13 08:53	01/25/13 18:27	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	65		29 - 120				01/24/13 08:53	01/24/13 18:58	
Terphenyl-d14 (Surr)	78		13 - 120				01/24/13 08:53	01/24/13 18:58	
Nitrobenzene-d5 (Surr)	67		27 - 120				01/.24/13 08:53	01/24/13 18:58	
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
			0.40	0.40	n/			114/24/42 NZ-2Z	

01/24/13 07:37

0.10

78

0.10 %

Client: Environmental Enterprise Group

Project/Site: EEG Default

Percent Solids

TestAmerica Job ID: 490-17778-1

SDG: Laurel Bay Housing Project

Lab Sample ID: 490-17778-2

Matrix: Solid

Percent Solids: 82.7

Client Sample	ID: 646	Dahlia-a
	414 5140 4	0.50

Date Collected: 01/15/13 13:50 Date Received: 01/23/13 08:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00209	0.000700	mg/Kg	n	01/24/13 07:28	01/26/13 19:58	4
Ethylbenzene	0.0644		0.00209	0.000700	mg/Kg	Ħ	01/24/13 07:28	01/26/13 19:58	1
Naphthalene	0.201		0.00523	0.00178	mg/Kg	¤	01/24/13 07:28	01/26/13 19:58	1
Toluene	ND		0.00209	0.000774	mg/Kg	¤	01/24/13 07:28	01/26/13 19:58	1
Xylenes, Total	0.0251		0.00523	0.000700	mg/Kg	芒	01/24/13 07:28	01/26/13 19:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		70 - 130				01/24/13 07:28	01/26/13 19:58	. 1
4-Bromofluorobenzene (Surr)	219	X	70 - 130				01/24/13 07:28	01/26/13 19:58	1
Dibromofluoromethane (Surr)	97		70 - 130				01/24/13 07:28	01/.26/13 19:58	T
Toluene-d8 (Surr)	105		70 - 130				01/24/13 07:28	01/26/13 19:58	*
Method: 8270D - Semivolatile (Organic Compou	nds (GC/MS	3)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0788	0.0118	mg/Kg	¤	01/24/13 08:53	01/24/13 20:05	1
Acenaphthylene	ND		0.0788	0.0106	mg/Kg	Ħ	01/24/13 08:53	01/24/13 20:05	1
Anthracene	0.926		0.0788	0.0106	mg/Kg	Ħ	01/24/13 08:53	01/24/13 20:05	1
Benzo[a]anthracene	0.856		0.0788	0.0177	mg/Kg	Ħ	01/24/13 08:53	01/24/13 20:05	1
Benzo[a]pyrene	0.338		0.0788	0.0141	mg/Kg	¤	01/24/13 08:53	01/24/13 20:05	
Benzo[b]fluoranthene	0.544		0.0788	0.0141	mg/Kg	Ħ	01/24/13 08:53	01/24/13 20:05	
Benzo[g,h,i]perylene	0.0982		0.0788	0.0106	mg/Kg	Ħ	01/24/13 08:53	01/24/13 20:05	3
Benzo[k]fluoranthene	0.246		0.0788	0.0165	mg/Kg	¤	01/24/13 08:53	01/24/13 20:05	+
1-Methylnaphthalene	9.86		0.394	0.0824	mg/Kg	¤	01/24/13 08:53	01/25/13 18:50	5
Pyrene	1.84		0.0788	0.0141	mg/Kg	¤	01/24/13 08:53	01/24/13 20:05	
Phenanthrene	7.27	E	0.0788	0.0106	mg/Kg	¤	01/24/13 08:53	01/24/13 20:05	
Chrysene	0.698		0.0788	0.0106	mg/Kg	¤	01/24/13 08:53	01/24/13 20:05	1
Dibenz(a,h)anthracene	ND		0.0788	0.00824	mg/Kg	¤	01/24/13 08:53	01/24/13 20:05	1
Fluoranthene	3.20		0.0788	0.0106	mg/Kg	¤	01/24/13 08:53	01/24/13 20:05	3
Fluorene	3.15		0.0788	0.0141	mg/Kg	¤	01/24/13 08:53	01/24/13 20:05	
Indeno[1,2,3-cd]pyrene	0.101		0.0788	0.0118	mg/Kg	¤	01/24/13 08:53	01/24/13 20:05	
Naphthalene	1.26		0.0788	0.0106	mg/Kg	¤	01/24/13 08:53	01/24/13 20:05	1
2-Methylnaphthalene	9.48		0.394	0.0941	mg/Kg	¤	01/24/13 08:53	01/25/13 18:50	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	74		29 - 120				01/24/13 08:53	01/24/13 20:05	T
Terphenyl-d14 (Surr)	85		13 - 120				01/24/13 08:53	01/24/13 20:05	Ţ
Nitrobenzene-d5 (Surr)	101		27 - 120				01/24/13 08:53	01/24/13 20:05	1
General Chemistry Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac

01/24/13 07:37

0.10

Client: Environmental Enterprise Group

Client Sample ID: 634 Dahlia Date Collected: 01/16/13 11:20 Date Received: 01/23/13 08:20

Project/Site: EEG Default

Analyte

Percent Solids

TestAmerica Job ID: 490-17778-1 SDG: Laurel Bay Housing Project

Lab Sample ID: 490-17778-3

Matrix: Solid
Percent Solids: 95.4

Method: 8260B - Volatile Orga Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00238	0.000799		¤	01/24/13 07:28	01/28/13 08:48	-
Ethylbenzene	ND		0.00238	0.000799	mg/Kg	Ħ	01/24/13 07:28	01/28/13 08:48	1
Naphthalene	ND		0.00596	0.00203	mg/Kg	Ħ	01/24/13 07:28	01/28/13 08:48	-
Toluene	ND		0.00238	0.000882	mg/Kg	Ħ	01/24/13 07:28	01/28/13 08:48	
Xylenes, Total	ND		0.00596	0.000799		¤	01/24/13 07:28	01/28/13 08:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		70 - 130				01/24/13 07:28	01/.28/13 08:48	1
4-Bromofluorobenzene (Surr)	108		70 - 130				01/24/13 07:28	01/28/13 08.48	
Dibromofluoromethane (Surr)	95		70 _ 130				01/24/13 07:28	01/28/13 08:48	
Toluene-d8 (Surr)	95		70 - 130				01/24/13 07:28	01/.28/13 08.48	3
Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0690	0.0103	mg/Kg	¤	01/24/13 08:53	01/24/13 20:28	1
Acenaphthylene	ND		0.0690	0.00926	mg/Kg	Ħ	01/24/13 08:53	01/24/13 20:28	1
Anthracene	ND		0.0690	0.00926	mg/Kg	¤	01/24/13 08:53	01/24/13 20:28	- 1
Benzo[a]anthracene	ND		0.0690	0.0154	mg/Kg	ŭ	01/24/13 08:53	01/24/13 20:28	1
Benzo[a]pyrene	0.138		0.0690	0.0123	mg/Kg	Ø	01/24/13 08:53	01/24/13 20:28	1
Benzo[b]fluoranthene	ND		0.0690	0.0123	mg/Kg	n	01/24/13 08:53	01/24/13 20:28	1
Benzo[g,h,i]perylene	0.0381	J	0.0690	0.00926	mg/Kg	Ħ	01/24/13 08:53	01/24/13 20:28	1
Benzo[k]fluoranthene	ND		0.0690	0.0144	mg/Kg	¤	01/24/13 08:53	01/24/13 20:28	1
1-Methylnaphthalene	ND		0.0690	0.0144	mg/Kg	¤	01/24/13 08:53	01/24/13 20:28	
Pyrene	ND		0.0690	0.0123	mg/Kg	¤	01/24/13 08:53	01/24/13 20:28	1
Phenanthrene	ND		0.0690	0.00926	mg/Kg	¤	01/24/13 08:53	01/24/13 20:28	
Chrysene	ND		0.0690	0.00926	mg/Kg	¤	01/24/13 08:53	01/24/13 20:28	1
Dibenz(a,h)anthracene	ND		0.0690	0.00720	mg/Kg	¤	01/24/13 08:53	01/24/13 20:28	1
Fluoranthene	ND		0.0690	0.00926	mg/Kg	¤	01/24/13 08:53	01/24/13 20:28	7
Fluorene	ND		0.0690	0.0123	mg/Kg	¤	01/24/13 08:53	01/24/13 20:28	1
Indeno[1,2,3-cd]pyrene	ND		0.0690	0.0103	mg/Kg	Ħ	01/24/13 08:53	01/24/13 20:28	
Naphthalene	ND		0.0690	0.00926	mg/Kg	¤	01/24/13 08:53	01/24/13 20:28	1
2-Methylnaphthalene	ND		0.0690	0.0165	mg/Kg	¤	01/24/13 08:53	01/24/13 20:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	64		29 - 120				01/24/13 08:53	01/24/13 20:28	*
Terphenyl-d14 (Surr)	78		13 - 120				01/24/13 08:53	01/24/13 20:28	
Nitrobenzene-d5 (Surr)	57		27 - 120				01/24/13 08:53	01/24/13 20:28	1
General Chemistry									
A malesta	Danula	Qualifier	D1	DI.	Unit	D	Drangrad	Analyzed	Dil Fac

Analyzed

01/24/13 07:37

Dil Fac

RL

0.10

RL Unit

0.10 %

Prepared

Result Qualifier

95

Client: Environmental Enterprise Group

Project/Site: EEG Default

TestAmerica Job ID: 490-17778-1

SDG: Laurel Bay Housing Project

Client Sample ID: 629 Dahlia

Date Collected: 01/17/13 11:50 Date Received: 01/23/13 08:20 Lab Sample ID: 490-17778-4

Matrix: Solid Percent Solids: 93.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00235	0.000786	mg/Kg	n	01/24/13 07:28	01/28/13 09:19	1
Ethylbenzene	ND		0.00235	0.000786	mg/Kg	¤	01/24/13 07:28	01/28/13 09:19	7
Naphthalene	ND		0.00587	0.00200	mg/Kg	Ħ	01/24/13 07:28	01/28/13 09:19	
Toluene	0.00103	J	0.00235	0.000869	mg/Kg	¤	01/24/13 07:28	01/28/13 09:19	36
Xylenes, Total	ND		0.00587	0.000786	mg/Kg	¤	01/24/13 07:28	01/28/13 09:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1, 2-Dichloroethane-d4 (Surr)	104		70 - 130				01/24/13 07:28	01/28/13 09:19	į.
4-Bromofluorobenzene (Surr)	105		70 - 130				01/24/13 07:28	01/28/13 09:19	Ē

-	•			•	
1, 2-Dichloroethane-d4 (Surr)	104	70 - 130	01/24/13 07:28	01/.28/13 09:19	į ¹
4-Bromofluorobenzene (Surr)	105	70 - 130	01/24/13 07:28	01/28/13 09:19	Ē
Dibromofluoromethane (Surr)	96	70 - 130	01/24/13 07:28	01/28/13 09:19	7
Toluene-d8 (Surr)	92	70 - 130	01/24/13 07:28	01/28/13 09:19	7

Dibromofluoromethane (Surr)	96		70 - 130				01/24/13 07:28	01/28/13 09:19	T
Toluene-d8 (Surr)	92		70 - 130				01/24/13 07:28	01/28/13 09:19	7
Method: 8270D - Semivolatile Org	ganic Compou	ınds (GC/MS	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0708	0.0106	mg/Kg	n	01/24/13 08:53	01/24/13 20:51	1
Acenaphthylene	ND		0.0708	0.00951	mg/Kg	n	01/24/13 08:53	01/24/13 20:51	1
Anthracene	ND		0.0708	0.00951	mg/Kg	Ħ	01/24/13 08:53	01/24/13 20:51	1
Benzo[a]anthracene	ND		0.0708	0.0159	mg/Kg	Ħ	01/24/13 08:53	01/24/13 20:51	1
Benzo[a]pyrene	ND		0.0708	0.0127	mg/Kg	Ħ	01/24/13 08:53	01/24/13 20:51	3.
Benzo[b]fluoranthene	ND		0.0708	0.0127	mg/Kg	¤	01/24/13 08:53	01/24/13 20:51	
Benzo[g,h,i]perylene	ND		0.0708	0.00951	mg/Kg	Ħ	01/24/13 08:53	01/24/13 20:51	
Benzo[k]fluoranthene	ND		0.0708	0.0148	mg/Kg	Ħ	01/24/13 08:53	01/24/13 20:51	
1-Methylnaphthalene	ND		0.0708	0.0148	mg/Kg	¤	01/24/13 08:53	01/24/13 20:51	
Pyrene	ND		0.0708	0.0127	mg/Kg	¤	01/24/13 08:53	01/24/13 20:51	*
Phenanthrene	ND		0.0708	0.00951	mg/Kg	Ħ	01/24/13 08:53	01/24/13 20:51	1
Chrysene	ND		0.0708	0.00951	mg/Kg	Ħ	01/24/13 08:53	01/24/13 20:51	1
Dibenz(a,h)anthracene	ND		0.0708	0.00740	mg/Kg	Ħ	01/24/13 08:53	01/24/13 20:51	3.
Fluoranthene	ND		0.0708	0.00951	mg/Kg	17	01/24/13 08:53	01/24/13 20:51	*
Fluorene	ND		0.0708	0.0127	mg/Kg	Ħ	01/24/13 08:53	01/24/13 20:51	1
Indeno[1,2,3-cd]pyrene	ND		0.0708	0.0106	mg/Kg	Ħ	01/24/13 08:53	01/24/13 20:51	1
Naphthalene	ND		0.0708	0.00951	mg/Kg	¤	01/24/13 08:53	01/24/13 20:51	1
2-Methylnaphthalene	ND		0.0708	0.0169	mg/Kg	¤	01/24/13 08:53	01/24/13 20:51	3
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	70		29 - 120				01/24/13 08:53	01/24/13 20:51	- 1
Terphenyl-d14 (Surr)	85		13 - 120				01/24/13 08:53	01/24/13 20:51	*
Nitrobenzene-d5 (Surr)	63		27 _ 120				01/24/13 08:53	01/24/13 20:51	*
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

,		_,					197
General Chemistry Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	93	0.10	0.10 %			01/24/13 07:37	

Client: Environmental Enterprise Group

Project/Site: EEG Default

Percent Solids

TestAmerica Job ID: 490-17778-1 SDG: Laurel Bay Housing Project

Lab Sample ID: 490-17778-5

Matrix: Solid

Percent Solids: 89.0

Client	Sample	ID: 635	Dahlia-1
--------	--------	---------	----------

Date Collected: 01/15/13 13:45 Date Received: 01/23/13 08:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00226	0.000757	mg/Kg	n	01/24/13 07:28	01/28/13 09:49	-
Ethylbenzene	ND		0.00226	0.000757	mg/Kg	¤	01/24/13 07:28	01/28/13 09:49	
Naphthalene	ND		0.00565	0.00192	mg/Kg	n	01/24/13 07:28	01/28/13 09:49	3
Toluene	ND		0.00226	0.000837	mg/Kg	¤	01/24/13 07:28	01/28/13 09:49	
Xylenes, Total	ND		0.00565	0.000757	mg/Kg	¤	01/24/13 07:28	01/28/13 09:49	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1, 2-Dichloroethane-d4 (Surr)	104		70 - 130				01/24/13 07:28	01/28/13 09:49	
4-Bromofluorobenzene (Surr)	104		70 - 130				01/24/13 07:28	01/28/13 09:49	
Dibromofluoromethane (Surr)	97		70 - 130				01/24/13 07:28	01/28/13 09:49	
Toluene-d8 (Surr)	92		70 - 130				01/24/13 07:28	01/28/13 09:49	
Method: 8270D - Semivolatile		•	•						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	ND		0.0749	0.0112		Ħ	01/24/13 08:53	01/24/13 21:13	
Acenaphthylene	ND		0.0749	0.0101		Ħ	01/24/13 08:53	01/24/13 21:13	
Anthracene	ND		0.0749	0.0101		¤	01/24/13 08:53	01/24/13 21:13	
Benzo[a]anthracene	ND		0.0749	0.0168	mg/Kg	Ħ	01/24/13 08:53	01/24/13 21:13	
Benzo[a]pyrene	ND		0.0749	0.0134	mg/Kg	Ħ	01/24/13 08:53	01/24/13 21:13	
Benzo[b]fluoranthene	ND		0.0749	0.0134	mg/Kg	Ħ	01/24/13 08:53	01/24/13 21:13	
Benzo[g,h,i]perylene	ND		0.0749	0.0101	mg/Kg	Ħ	01/24/13 08:53	01/24/13 21:13	
Benzo[k]fluoranthene	ND		0.0749	0.0156	mg/Kg	¤	01/24/13 08:53	01/24/13 21:13	
1-Methylnaphthalene	ND		0.0749	0.0156	mg/Kg	Ħ	01/24/13 08:53	01/24/13 21:13	
Pyrene	ND		0.0749	0.0134	mg/Kg	Ħ	01/24/13 08:53	01/24/13 21:13	
Phenanthrene	ND		0.0749	0.0101	mg/Kg	n	01/24/13 08:53	01/24/13 21:13	
Chrysene	ND		0.0749	0.0101	mg/Kg	¤	01/24/13 08:53	01/24/13 21:13	
Dibenz(a,h)anthracene	ND		0.0749	0.00782	mg/Kg	¤	01/24/13 08:53	01/24/13 21:13	
Fluoranthene	ND		0.0749	0.0101	mg/Kg	¤	01/24/13 08:53	01/24/13 21:13	
Fluorene	ND		0.0749	0.0134	mg/Kg	¤	01/24/13 08:53	01/24/13 21:13	
Indeno[1,2,3-cd]pyrene	ND		0.0749	0.0112	mg/Kg	Ö	01/24/13 08:53	01/24/13 21:13	
Naphthalene	ND		0.0749	0.0101	mg/Kg	¤	01/24/13 08:53	01/24/13 21:13	
2-Methylnaphthalene	ND		0.0749	0.0179	mg/Kg	₩	01/24/13 08:53	01/24/13 21:13	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	55		29 - 120				01/24/13 08:53	01/24/13 21:13	
Terphenyl-d14 (Surr)	65		13 - 120				01/24/13 08:53	01/24/13 21:13	
Nitrobenzene-d5 (Surr)	50		27 - 120				01/24/13 08:53	01/24/13 21:13	
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa

01/24/13 07:37

0.10

89

Client: Environmental Enterprise Group

Project/Site: EEG Default

Percent Solids

TestAmerica Job ID: 490-17778-1 SDG: Laurel Bay Housing Project

Lab Sample ID: 490-17778-6

Matrix: Solid Percent Solids: 84.2

Client Sample	ID: 635	Dahlia-2
Date Collected: 0:	1/16/13 11	1.45

dis (GC/MS) sult Qualifier ND 114 J .78 ND 528 ery Qualifier 116 82 415 X	RL 0.00216 0.126 0.315 0.126 0.315 <i>Limits</i> 70 - 130	MDL 0.000725 0.0428 0.107 0.0466 0.0428	mg/Kg mg/Kg mg/Kg mg/Kg	D m m	Prepared 01/24/13 07:28 01/24/13 07:26 01/24/13 07:26 01/24/13 07:26	Analyzed 01/28/13 10:19 01/29/13 10:26 01/29/13 10:26 01/29/13 10:26	Dil Fac
ND 114 J J	0.00216 0.126 0.315 0.126 0.315	0.000725 0.0428 0.107 0.0466	mg/Kg mg/Kg mg/Kg mg/Kg	n n	01/24/13 07:28 01/24/13 07:26 01/24/13 07:26 01/24/13 07:26	01/28/13 10:19 01/29/13 10:26 01/29/13 10:26	1
114 J .78 ND .228 ery Qualifier .116 .82 415 X	0.126 0.315 0.126 0.315	0.0428 0.107 0.0466	mg/Kg mg/Kg mg/Kg	¤	01/24/13 07:26 01/24/13 07:26 01/24/13 07:26	01/29/13 10:26 01/29/13 10:26	1
.78 ND 528 ery Qualifier 116 82 415 X	0.315 0.126 0.315 Limits	0.107 0.0466	mg/Kg mg/Kg	¤	01/24/13 07:26 01/24/13 07:26	01/29/13 10:26	1
ND 628 ery Qualifier 116 82 415 X	0.126 0.315 <i>Limits</i>	0.0466	mg/Kg		01/24/13 07:26		
Qualifier 116 82 415 X	0.315 <i>Limits</i>			¤		- 1/ - 0/ 1 - 1 - 1 - 1	,
116 82 415 X					01/24/13 07:26	01/29/13 10:26	1
82 415 X	70 - 130				Prepared	Analyzed	Dil Fac
415 X					01/24/13 07:28	01/28/13 10:19	1
	70 - 130				01/24/13 07:26	01/29/13 10:26	1
404	70 - 130				01/24/13 07:28	01/.28/13 10:19	
101	70 - 130				01/24/13 07:26	01/29/13 10:26	1
109	70 - 130				01/24/13 07:28	01/28/13 10:19	
90	70 - 130				01/24/13 07:26	01/29:/13 10:26	1
134 X	70 - 130				01/24/13 07:28	01/28/13 10:19	7
87	70 - 130				01/24/13 07:26	01/29/13 10:26	1
oounds (GC/N	NS)						
sult Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
.03	0.392	0.0585	mg/Kg	Ħ	01/24/13 08:53	01/25/13 19:12	5
539	0.392		mg/Kg	Ħ	01/24/13 08:53	01/25/13 19:12	5
324 J	0.392	0.0526	mg/Kg	X	01/24/13 08:53	01/25/13 19:12	5
ND	0.392	0.0877	mg/Kg	Ħ	01/24/13 08:53	01/25/13 19:12	5
ND	0.392	0.0702	mg/Kg	Ø	01/24/13 08:53	01/25/13 19:12	5
ND	0.392	0.0702	mg/Kg	Ħ	01/24/13 08:53	01/25/13 19:12	5
ND	0.392	0.0526	mg/Kg	n	01/24/13 08:53	01/25/13 19:12	5
ND	0.392	0.0819	mg/Kg	Ħ	01/24/13 08:53	01/25/13 19:12	5
4.5	0.392	0.0819	mg/Kg	Ħ	01/24/13 08:53	01/25/13 19:12	5
12 0	0.392	0.0702	mg/Kg	Ħ	01/24/13 08:53	01/25/13 19:12	5
.92	0.392	0.0526	mg/Kg	¤	01/24/13 08:53	01/25/13 19:12	5
ND	0.392	0.0526	mg/Kg	¤	01/24/13 08:53	01/25/13 19:12	5
ND	0.392	0.0409	mg/Kg	¤	01/24/13 08:53	01/25/13 19:12	5
ND	0.392	0.0526	mg/Kg	Ħ	01/24/13 08:53	01/25/13 19:12	5
.45	0.392	0.0702	mg/Kg	¤	01/24/13 08:53	01/25/13 19:12	5
ND	0.392	0.0585	mg/Kg	¤	01/24/13 08:53	01/25/13 19:12	5
384 J	0.392	0.0526	mg/Kg	Ħ	01/24/13 08:53	01/25/13 19:12	5
8.9	0.392	0.0936	mg/Kg	¤	01/24/13 08:53	01/25/13 19:12	5
ery Qualifier	Limits				Prepared	Analyzed	Dil Fac
69	29 - 120				01/24/13 08:53	01/25/13 19:12	5
80	13 - 120				01/24/13 08:53	01/25/13 19:12	5
63	27 - 120				01/24/13 08:53	01/25/13 19:12	5
	RL			D			Dil Fac
	134 X 87 Pounds (GC/N sult Qualifier 1.03 539 324 J ND	134 X 70 - 130 87 70 - 130 Pounds (GC/MS) sult Qualifier RL 1.03 0.392 539 0.392 ND 0.392	134 X 70 - 130 87 70 - 130 Pounds (GC/MS) sult Qualifier RL 1.03 0.392 0.0585 539 0.392 0.0526 ND 0.392 0.0702 ND 0.392 0.0702 ND 0.392 0.0702 ND 0.392 0.0819 14.5 0.392 0.0819 14.5 0.392 0.0819 14.5 0.392 0.0819 14.5 0.392 0.0819 14.5 0.392 0.0526 ND 0.392 0.0526	70 - 130 87	### 134 X	134 X 70 - 130 01/24/13 07:28 01/24/13 07:26 01/24/13 07:26 01/24/13 07:26 01/24/13 07:26 01/24/13 07:26 01/24/13 07:26 01/24/13 07:26 01/24/13 07:26 01/24/13 08:53 0.392 0.0526 mg/kg 01/24/13 08:53 0.392 0.0526 mg/kg 01/24/13 08:53 0.392 0.0702 mg/kg 01/24/13 08:53 01/24/13 08:53 0.392 0.0702 mg/kg 01/24/13 08:53 01	134 X 70

01/24/13 07:37

0.10

84

Client: Environmental Enterprise Group

Project/Site: EEG Default

Percent Solids

TestAmerica Job ID: 490-17778-1 SDG: Laurel Bay Housing Project

Lab Sample ID: 490-17778-7

Matrix: Solid

Percent Solids: 95.7

Client Sample ID: 628 Dahlia

Date Collected: 01/17/13 13:45 Date Received: 01/23/13 08:20

Method: 8260B - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00216	0.000723	mg/Kg	n	01/24/13 07:28	01/28/13 10:49	1
Ethylbenzene	ND		0.00216	0.000723	mg/Kg	¤	01/24/13 07:28	01/28/13 10:49	1
Naphthalene	0.0216		0.00540	0.00183	mg/Kg	n	01/24/13 07:28	01/28/13 10:49	1
Toluene	0.00161	J	0.00216	0.000799	mg/Kg	¤	01/24/13 07:28	01/28/13 10:49	t
Xylenes, Total	ND		0.00540	0.000723	mg/Kg	¤	01/24/13 07:28	01/28/13 10:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		70.130				01/24/13 07:28	01/28/13 10:49	7
4-Bromofluorobenzene (Surr)	105		70 - 130				01/24/13 07:28	01/28/13 10.49	7
Dibromofluoromethane (Surr)	96		70 - 130				01/24/13 07:28	01/28/13 10.49	
Toluene-d8 (Surr)	80		70 _ 130				01/24/13 07:28	01/28/13 10:49	ŧ
Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0682	0.0102	mg/Kg	¤	01/24/13 08:53	01/24/13 21:57	
Acenaphthylene	ND		0.0682	0.00917	mg/Kg	¤	01/24/13 08:53	01/24/13 21:57	Tr.
Anthracene	ND		0.0682	0.00917	mg/Kg	¤	01/24/13 08:53	01/24/13 21:57	- 1
Benzo[a]anthracene	ND		0.0682	0.0153	mg/Kg	¤	01/24/13 08:53	01/24/13 21:57	t
Benzo[a]pyrene	ND		0.0682	0.0122	mg/Kg	Ħ	01/24/13 08:53	01/24/13 21:57	1
Benzo[b]fluoranthene	ND		0.0682	0.0122	mg/Kg	¤	01/24/13 08:53	01/24/13 21:57	1
Benzo[g,h,i]perylene	ND		0.0682	0.00917	mg/Kg	¤	01/24/13 08:53	01/24/13 21:57	7
Benzo[k]fluoranthene	ND		0.0682	0.0143	mg/Kg	¤	01/24/13 08:53	01/24/13 21:57	
1-Methylnaphthalene	ND		0.0682	0.0143	mg/Kg	¤	01/24/13 08:53	01/24/13 21:57	35
Pyrene	ND		0.0682	0.0122	mg/Kg	¤	01/24/13 08:53	01/24/13 21:57	7
Phenanthrene	ND		0.0682	0.00917	mg/Kg	n	01/24/13 08:53	01/24/13 21:57	1
Chrysene	ND		0.0682	0.00917	mg/Kg	¤	01/24/13 08:53	01/24/13 21:57	- 1
Dibenz(a,h)anthracene	ND		0.0682	0.00713	mg/Kg	¤	01/24/13 08:53	01/24/13 21:57	,
Fluoranthene	ND		0.0682	0.00917	mg/Kg	¤	01/24/13 08:53	01/24/13 21:57	1
Fluorene	ND		0.0682	0.0122	mg/Kg	¤	01/24/13 08:53	01/24/13 21:57	
Indeno[1,2,3-cd]pyrene	ND		0.0682	0.0102	mg/Kg	Ħ	01/24/13 08:53	01/24/13 21:57	1
Naphthalene	ND		0.0682	0.00917	mg/Kg	¤	01/24/13 08:53	01/24/13 21:57	- 1
2-Methylnaphthalene	ND		0.0682	0.0163	mg/Kg	Ħ	01/24/13 08:53	01/24/13 21:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	57		29 - 120				01/24/13 08:53	01/24/13 21:57	,
Terphenyl-d14 (Surr)	69		13 - 120				01/24/13 08:53	01/24/13 21:57	
Nitrobenzene-d5 (Surr)	50		27 - 120				01/24/13 08:53	01/24/13 21:57	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
			0.40	0 . 0	0/			04/04/40 07:07	

01/24/13 07:37

0.10

96

Client: Environmental Enterprise Group

Project/Site: EEG Default

TestAmerica Job ID: 490-17778-1

SDG: Laurel Bay Housing Project

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: 490-17581-A-54-D MS

Matrix: Solid

Analysis Batch: 53895

Client	Sample	ID:	Matrix	Spike	
		-	_		

Prep Type: Total/NA

Prep Batch: 52654

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		0.0440	0.03491		mg/Kg	Ö	79	31 - 143	
Ethylbenzene	ND		0.0440	0.02329		mg/Kg	¤	53	23 - 161	
Naphthalene	ND		0.0440	0.04726		mg/Kg	Ħ	107	10 _ 176	
Toluene	ND		0.0440	0.02527		mg/Kg	¤	57	30 - 155	
Xylenes, Total	ND		0.132	0.07165		mg/Kg	Ħ	54	25 - 162	

Limits

70 - 130

70 - 130

70 - 130

70 - 130

Lab Sample ID: 490-17581-A-54-E MSD

Matrix: Solid

Toluene-d8 (Surr)

Surrogate

Analysis Batch: 53895

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 52654

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.0456	0.03525		mg/Kg	n	77	31 - 143	1	50
Ethylbenzene	ND		0.0456	0.02346		mg/Kg	Ä	51	23 - 161	- 1	50
Naphthalene	ND		0.0456	0.03587		mg/Kg	¤	79	10 - 176	27	50
Toluene	ND		0.0456	0.02737		mg/Kg	¤	60	30 - 155	8	50
Xylenes, Total	ND		0.137	0.07212		mg/Kg	¤	53	25 - 162	1	50

MSD MSD

MS MS %Recovery Qualifier

100

105

101

83

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		70 - 130
4-Bromofluorobenzene (Surr)	103		70 - 130
Dibromofluoromethane (Surr)	100		70 - 130
Toluene-d8 (Surr)	85		70 - 130

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 53895

Matrix: Solid

Lab Sample ID: MB 490-53895/6

MB	MID							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.00200	0.000670	mg/Kg			01/26/13 11:54	1
ND		0.00200	0.000670	mg/Kg			01/26/13 11:54	1
ND		0.00500	0.00170	mg/Kg			01/26/13 11:54	1
ND		0.00200	0.000740	mg/Kg			01/26/13 11:54	1
ND		0.00500	0.000670	mg/Kg			01/26/13 11:54	4
	Result ND ND ND	ND ND ND	Result Qualifier RL ND 0.00200 ND 0.00200 ND 0.00500 ND 0.00200	Result Qualifier RL MDL ND 0.00200 0.000670 ND 0.00200 0.000670 ND 0.00500 0.00170 ND 0.00200 0.000740	Result Qualifier RL MDL Unit ND 0.00200 0.000670 mg/Kg ND 0.00200 0.000670 mg/Kg ND 0.00500 0.00170 mg/Kg ND 0.00200 0.000740 mg/Kg	Result Qualifier RL MDL Unit D ND 0.00200 0.000670 mg/Kg ND 0.00200 0.000670 mg/Kg ND 0.00500 0.00170 mg/Kg ND 0.00200 0.000740 mg/Kg	Result Qualifier RL MDL Unit D Prepared ND 0.00200 0.00670 mg/Kg ND 0.00200 0.00670 mg/Kg ND 0.00500 0.00170 mg/Kg ND 0.00200 0.000740 mg/Kg	Result Qualifier RL MDL Unit D Prepared Analyzed ND 0.00200 0.000670 mg/Kg 01/26/13 11:54 ND 0.00200 0.000670 mg/Kg 01/26/13 11:54 ND 0.00500 0.00170 mg/Kg 01/26/13 11:54 ND 0.00200 0.000740 mg/Kg 01/26/13 11:54

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		70 - 130		01/26/13 11:54	1
4-Bromofluorobenzene (Surr)	107		70 - 130		01/26/13 11:54	1
Dibromofluoromethane (Surr)	92		70 - 130		01/26/13 11:54	1
Toluene-d8 (Surr)	100		70 - 130		01/26/13 11:54	*

Client: Environmental Enterprise Group

Project/Site: EEG Default

TestAmerica Job ID: 490-17778-1 SDG: Laurel Bay Housing Project

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

мв мв

Lab Sample ID: MB 490-53895/7

Matrix: Solid

Analysis Batch: 53895

Client	Sample	ID:	Meth	nod	Blank
	D.	7	F	T-	A-I/NIA

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.100	0.0335	mg/Kg			01/26/13 12:24	- 1
Ethylbenzene	ND		0.100	0.0335	mg/Kg			01/26/13 12:24	1
Naphthalene	ND		0.250	0.0850	mg/Kg			01/26/13 12:24	1
Toluene	ND		0.100	0.0370	mg/Kg			01/26/13 12:24	1
Xylenes, Total	ND		0.250	0.0335	mg/Kg			01/26/13 12:24	30

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1, 2-Dichloroethane-d4 (Surr)	87	70 _ 130		01/26/13 12:24	T
4-Bromofluorobenzene (Surr)	104	70 - 130		01/26/13 12:24	1
Dibromofluoromethane (Surr)	89	70 - 130		01/26/13 12:24	Ť
Toluene-d8 (Surr)	97	70 - 130		01/26/13 12:24	+

Lab Sample ID: LCS 490-53895/3

Matrix: Solid

Analysis Batch: 53895

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
0.0500	0.05291		mg/Kg		106	75 _ 127
0.0500	0.05429		mg/Kg		109	80 - 134
0.0500	0.05887		mg/Kg		118	69 - 150
0.0500	0.05156		mg/Kg		103	80 - 132
0.150	0.1696		mg/Kg		113	80 - 137
	Added 0.0500 0.0500 0.0500 0.0500	Added Result 0.0500 0.05291 0.0500 0.05429 0.0500 0.05887 0.0500 0.05156	Added Result Qualifier 0.0500 0.05291 0.0500 0.05429 0.0500 0.05887 0.0500 0.05156	Added Result Qualifier Unit 0.0500 0.05291 mg/Kg 0.0500 0.05429 mg/Kg 0.0500 0.05887 mg/Kg 0.0500 0.05156 mg/Kg	Added Result Qualifier Unit D 0.0500 0.05291 mg/Kg 0.0500 0.05429 mg/Kg 0.0500 0.05887 mg/Kg 0.0500 0.05156 mg/Kg	Added Result Qualifier Unit D %Rec 0.0500 0.05291 mg/Kg 106 0.0500 0.05429 mg/Kg 109 0.0500 0.05887 mg/Kg 118 0.0500 0.05156 mg/Kg 103

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		70 - 130
4-Bromofluorobenzene (Surr)	107		70 - 130
Dibromofluoromethane (Surr)	101		70 - 130
Toluene-d8 (Surr)	95		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Lab Sample ID: LCSD 490-53895/4

Matrix: Solid

Analysis Batch: 53895

1	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.0500	0.05635		mg/Kg		113	75 - 127	6	50
Ethylbenzene	0.0500	0.05724		mg/Kg		114	80 _ 134	5	50
Naphthalene	0.0500	0.06473		mg/Kg		129	69 - 150	9	50
Toluene	0.0500	0.05352		mg/Kg		107	80 - 132	4	50
Xylenes, Total	0.150	0.1751		mg/Kg		117	80 - 137	3	50

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		70 - 130
4-Bromofluorobenzene (Surr)	96		70 - 130
Dibromofluoromethane (Surr)	100		70 - 130
Toluene-d8 (Surr)	93		70 - 130

Client: Environmental Enterprise Group

Project/Site: EEG Default

TestAmerica Job ID: 490-17778-1

SDG: Laurel Bay Housing Project

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 490-54052/6

Matrix: Solid

Analysis Batch: 54052

Client	Sample	ID:	Meth	nod	Blank
	Dr	an I	Vne	To	AI/NA

	MID	MID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.000670	mg/Kg			01/28/13 07:48	7
Ethylbenzene	ND		0.00200	0.000670	mg/Kg			01/28/13 07:48	1
Naphthalene	ND		0.00500	0.00170	mg/Kg			01/28/13 07:48	18
Toluene	ND		0.00200	0.000740	mg/Kg			01/28/13 07:48	1
Xylenes, Total	ND		0.00500	0.000670	mg/Kg			01/28/13 07:48	

	MB MB			
urrogate	%Recovery Qualifier	Limits	Prepared Analyzed	
,2-Dichloroethane-d4 (Surr)	86	70 - 130	01/28/13 07:48	
4-Bromofluorobenzene (Surr)	110	70 - 130	01/28/13 07:48	
Dibromofluoromethane (Surr)	93	70 - 130	01/28/13 07:48	
Toluene-d8 (Surr)	93	70 - 130	01/28/13 07:48	

Lab Sample ID: LCS 490-54052/3

Matrix: Solid

Analysis Batch: 54052

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.0500	0.04782		mg/Kg		96	75 - 127
Ethylbenzene	0.0500	0.05128		mg/Kg		103	80 - 134
Naphthalene	0.0500	0.05830		mg/Kg		117	69 - 150
Toluene	0.0500	0.05272		mg/Kg		105	80 - 132
Xylenes, Total	0.150	0.1639		mg/Kg		109	80 - 137

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130
Dibromofluoromethane (Surr)	100		70 _ 130
Toluene-d8 (Surr)	104		70 - 130

Lab Sample ID: LCSD 490-54052/4

Matrix: Solid

Analysis Batch: 54052

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD LC	CSD			%Rec.		RPD
Analyte	Added	Result Qu	ualifier Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.0500	0.04937	mg/Kg		99	75 _ 127	3	50
Ethylbenzene	0.0500	0.04943	mg/Kg		99	80 - 134	4	50
Naphthalene	0.0500	0.06157	mg/Kg		123	69 - 150	5	50
Toluene	0.0500	0.04864	mg/Kg		97	80 - 132	8	50
Xylenes, Total	0.150	0.1500	mg/Kg		100	80 - 137	9	50

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92		70 - 130
4-Bromofluorobenzene (Surr)	101		70 - 130
Dibromofluoromethane (Surr)	102		70 - 130
Toluene-d8 (Surr)	95		70 - 130

TestAmerica Nashville

Page 15 of 29

1/31/2013

Client: Environmental Enterprise Group

Project/Site: EEG Default

TestAmerica Job ID: 490-17778-1

SDG: Laurel Bay Housing Project

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 490-54278/7

Matrix: Solid

Analysis Batch: 54278

Client	Sample	ID:	Meth	od	Blank
	D	- T		To	A LAVID

Prep Type: Total/NA

	200
C	
4	0

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.100	0.0340	mg/Kg			01/29/13 08:55	1
Ethylbenzene	ND		0.100	0.0340	mg/Kg			01/29/13 08:55	1
Naphthalene	ND		0.250	0.0850	mg/Kg			01/29/13 08:55	1
Toluene	ND		0.100	0.0370	mg/Kg			01/29/13 08:55	1
Xylenes, Total	ND		0.250	0.0340	mg/Kg			01/29/13 08:55	1

	MB	MB			
Surrogate	%Recovery	Qualifier	Limits	Prepared Analyze	d Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		70 - 130	01/29/13 0	3:55
4-Bromofluorobenzene (Surr)	104		70 - 130	01/29/13 0	8:55
Dibromofluoromethane (Surr)	93		70 - 130	01/29/13 0	3:55
Toluene-d8 (Surr)	100		70 - 130	01/29/13 0	3:55

Lab Sample ID: LCS 490-54278/3

Matrix: Solid

Analysis Batch: 54278

Client Sample	ID: Lab Control Sample
	Dunn Times TeasI/NA

Prep Type: Total/NA

	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits
Benzene	0.0500	0.05504	mg/Kg		110	75 - 127
Ethylbenzene	0.0500	0.05379	mg/Kg		108	80 - 134
Naphthalene	0.0500	0.06518	mg/Kg		130	69 - 150
Toluene	0.0500	0.05012	mg/Kg		100	80 - 132
Xylenes, Total	0.150	0.1617	mg/Kg		108	80 - 137

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130
Dibromofluoromethane (Surr)	98		70 - 130
Toluene-d8 (Surr)	90		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 54278

Lab Sample ID: LCSD 490-54278/4

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.0500	0.05450		mg/Kg		109	75 _ 127		50
Ethylbenzene	0.0500	0.05471		mg/Kg		109	80 - 134	2	50
Naphthalene	0.0500	0.06376		mg/Kg		128	69 - 150	2	50
Toluene	0.0500	0.05379		mg/Kg		108	80 - 132	7	50
Xylenes, Total	0.150	0.1674		mg/Kg		112	80 - 137	4	50

LCSD LCSD

0	0/ 0	0	Limits
Surrogate	%Recovery	Quaimer	Limits
1,2-Dichloroethane-d4 (Surr)	95		70 - 130
4-Bromofluorobenzene (Surr)	100		70 - 130
Dibromofluoromethane (Sum)	98		70 - 130
Toluene-d8 (Surr)	97		70 - 130

Client: Environmental Enterprise Group

Project/Site: EEG Default

TestAmerica Job ID: 490-17778-1 SDG: Laurel Bay Housing Project

E

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-53313/1-A

Matrix: Solid

Analysis Batch: 53348

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 53313

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0670	0.0100	mg/Kg		01/24/13 08:53	01/24/13 17:06	1
Acenaphthylene	ND		0.0670	0.00900	mg/Kg		01/24/13 08:53	01/24/13 17:06	1
Anthracene	ND		0.0670	0.00900	mg/Kg		01/24/13 08:53	01/24/13 17:06	1
Benzo[a]anthracene	ND		0.0670	0.0150	mg/Kg		01/24/13 08:53	01/24/13 17:06	1
Benzo[a]pyrene	ND		0.0670	0.0120	mg/Kg		01/24/13 08:53	01/24/13 17:06	1
Benzo[b]fluoranthene	ND		0.0670	0.0120	mg/Kg		01/24/13 08:53	01/24/13 17:06	1
Benzo[g,h,i]perylene	ND		0.0670	0.00900	mg/Kg		01/24/13 08:53	01/24/13 17:06	1
Benzo[k]fluoranthene	ND		0.0670	0.0140	mg/Kg		01/24/13 08:53	01/24/13 17:06	1
1-Methylnaphthalene	ND		0.0670	0.0140	mg/Kg		01/24/13 08:53	01/24/13 17:06	1
Pyrene	ND		0.0670	0.0120	mg/Kg		01/24/13 08:53	01/24/13 17:06	1
Phenanthrene	ND		0.0670	0.00900	mg/Kg		01/24/13 08:53	01/24/13 17:06	1
Chrysene	ND		0.0670	0.00900	mg/Kg		01/24/13 08:53	01/24/13 17:06	4
Dibenz(a,h)anthracene	ND		0.0670	0.00700	mg/Kg		01/24/13 08:53	01/24/13 17:06	1
Fluoranthene	ND		0.0670	0.00900	mg/Kg		01/24/13 08:53	01/24/13 17:06	1
Fluorene	ND		0.0670	0.0120	mg/Kg		01/24/13 08:53	01/24/13 17:06	1
Indeno[1,2,3-cd]pyrene	ND		0.0670	0.0100	mg/Kg		01/24/13 08:53	01/24/13 17:06	1
Naphthalene	ND		0.0670	0.00900	mg/Kg		01/24/13 08:53	01/24/13 17:06	- 1
2-Methylnaphthalene	ND		0.0670	0.0160	mg/Kg		01/24/13 08:53	01/24/13 17:06	1

	MB	ΜВ
rogate	%Recovery	Qua

Lab Sample ID: LCS 490-53313/2-A

Matrix: Solid

Surrogate	%Recovery	Qualifier	Limits	
2-Fluorobiphenyl (Surr)	70		29 - 120	
Terphenyl-d14 (Surr)	87		13 - 120	
Nitrobenzene-d5 (Surr)	62		27 - 120	

Client Sample ID: Lab Control Sample

Analyzed

01/24/13 17:06

01/24/13 17:06

01/24/13 17.06

Prepared

01/24/13 08:53

01/24/13 08:53

01/24/13 08:53

Prep Type: Total/NA Prep Batch: 53313

Dil Fac

Analysis Batch: 53348	0		100		Prep Batch:
Analyte	Spike Added		LCS Qualifier Unit	D %Rec	%Rec. Limits
	1.67	1.351	mg/Kg	81	38 - 120
Acenaphthylene					
Anthracene	1.67	1.266	mg/Kg	76	46 - 124
Benzo[a]anthracene	1.67	1.335	mg/Kg	80	45 - 120
Benzo[a]pyrene	1.67	1.305	mg/Kg	78	45 _ 120
Benzo[b]fluoranthene	1.67	1.350	mg/Kg	81	42 - 120
Benzo[g,h,i]perylene	1.67	1.348	mg/Kg	81	38 - 120
Benzo[k]fluoranthene	1.67	1.287	mg/Kg	77	42 - 120
1-Methylnaphthalene	1.67	1.430	mg/Kg	86	32 - 120
Pyrene	1.67	1.319	mg/Kg	79	43 - 120
Phenanthrene	1.67	1.315	mg/Kg	79	45 _ 120
Chrysene	1.67	1.328	mg/Kg	80	43 - 120
Dibenz(a,h)anthracene	1.67	1.348	mg/Kg	81	32 - 128
Fluoranthene	1.67	1.287	mg/Kg	77	46 - 120
Fluorene	1.67	1.334	mg/Kg	80	42 - 120
Indeno[1,2,3-cd]pyrene	1.67	1.336	mg/Kg	80	41 - 121
Naphthalene	1.67	1.385	mg/Kg	83	32 _ 120
2-Methylnaphthalene	1.67	1.433	mg/Kg	86	28 - 120

TestAmerica Nashville

1/31/2013

Page 17 of 29

Client: Environmental Enterprise Group

Project/Site: EEG Default

TestAmerica Job ID: 490-17778-1

SDG: Laurel Bay Housing Project

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 490-53313/2-A

Matrix: Solid

Analysis Batch: 53348

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 53313

LCS LCS

Surrogate	%Recovery Qualifier	Limits
2-Fluorobiphenyl (Surr)	65	29 - 120
Terphenyl-d14 (Surr)	80	13 - 120
Nitrobenzene-d5 (Surr)	60	27 _ 120

Client Sample ID: 380 Aspen

Prep Type: Total/NA

Prep Batch: 53313

Lab Sample ID: 490-17778-1 MS Matrix: Solid

Analysis Batch: 53348

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthylene	0.149		2.12	1.643		mg/Kg	¤	71	25 - 120
Anthracene	0.336		2.12	1.722		mg/Kg	¤	66	28 - 125
Benzo[a]anthracene	0.574		2.12	2.104		mg/Kg	¤	72	23 - 120
Benzo[a]pyrene	0.241		2.12	1.717		mg/Kg	¤	70	15 _ 128
Benzo[b]fluoranthene	0.390		2.12	1.938		mg/Kg	¤	73	12 - 133
Benzo[g,h,i]perylene	0.0727	J	2.12	1.576		mg/Kg	¤	71	22 - 120
Benzo[k]fluoranthene	0.159		2.12	1.641		mg/Kg	¤	70	28 - 120
1-Methylnaphthalene	5.56		2.12	6.633	E	mg/Kg	¤	51	10 _ 120
Pyrene	1.26		2.12	2.620		mg/Kg	¤	64	20 - 123
Phenanthrene	2.49		2.12	3.789		mg/Kg	¤	62	21 - 122
Chrysene	0.502		2.12	1.975		mg/Kg	¤	70	20 _ 120
Dibenz(a,h)anthracene	ND		2.12	1.546		mg/Kg	¤	73	12 - 128
Fluoranthene	1.54		2.12	2.906		mg/Kg	¤	65	10 - 143
Fluorene	0.922		2.12	2.334		mg/Kg	¤	67	20 - 120
Indeno[1,2,3-cd]pyrene	0.0721	J	2.12	1.577		mg/Kg	¤	71	22 - 121
Naphthalene	1.16		2.12	2.638		mg/Kg	¤	70	10 - 120
2-Methylnaphthalene	7.85		2.12	8.811	Е	mg/Kg	¤	46	13 - 120

MS MS

Surrogate	%Recovery Quali	fier Limits
2-Fluorobiphenyl (Surr)	51	29 - 120
Terphenyl-d14 (Surr)	62	13 - 120
Nitrohenzene-d5 (Surr)	54	27 120

Lab Sample ID: 490-17778-1 MSD

Matrix: Solid

Analysis Batch: 53348

Client Sample ID: 380 Aspen Prep Type: Total/NA

Prep Batch: 53313

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthylene	0.149		2.14	1.917		mg/Kg	¤	82	25 - 120	15	50
Anthracene	0.336		2.14	2.130		mg/Kg	Ħ	84	28 _ 125	21	49
Benzo[a]anthracene	0.574		2.14	2.472		mg/Kg	¤	89	23 - 120	16	50
Benzo[a]pyrene	0.241		2.14	2.071		mg/Kg	Ħ	85	15 - 128	19	50
Benzo[b]fluoranthene	0.390		2.14	2.258		mg/Kg	Ħ	87	12 - 133	15	50
Benzo[g,h,i]perylene	0.0727	J	2.14	1.932		mg/Kg	¤	87	22 _ 120	20	50
Benzo[k]fluoranthene	0.159		2.14	1.980		mg/Kg	Ħ	85	28 - 120	19	45
1-Methylnaphthalene	5.56		2.14	6.676	E	mg/Kg	¤	52	10 - 120	1	50
Pyrene	1.26		2.14	2.985		mg/Kg	¤	81	20 - 123	13	50
Phenanthrene	2.49		2.14	4.060		mg/Kg	¤	73	21 - 122	7	50
Chrysene	0.502		2.14	2.359		mg/Kg	¤	87	20 - 120	18	49

TestAmerica Nashville

1/31/2013

Page 18 of 29

Client: Environmental Enterprise Group

Project/Site: EEG Default

TestAmerica Job ID: 490-17778-1 SDG: Laurel Bay Housing Project

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 490-17778-1 MSD

Matrix: Solid

Analysis Batch: 53348

Client	Sample	ID:	380	Aspe	n
	Prep	Тур	e: To	otal/N/	4

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dibenz(a,h)anthracene	ND		2.14	1.929		mg/Kg	325	90	12 - 128	22	50
Fluoranthene	1.54		2.14	3.287		mg/Kg	Ħ	81	10 - 143	12	50
Fluorene	0.922		2.14	2.565		mg/Kg	325	77	20 - 120	9	50
Indeno[1,2,3-cd]pyrene	0.0721	J	2.14	1.965		mg/Kg	X	88	22 - 121	22	50
Naphthalene	1.16		2.14	3.009		mg/Kg	X	87	10 _ 120	13	50
2-Methylnaphthalene	7.85		2.14	8.692	E	mg/Kg	¤	39	13 - 120	1	50

Prep Batch: 53313

2.14 8.692 E 13 - 120 MSD MSD

	IIIOD	III O D	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	64		29 - 120
Terphenyl-d14 (Surr)	82		13 - 120
Nitrobenzene-d5 (Surr)	65		27 - 120

Client Sample ID: Duplicate

Prep Type: Total/NA

Method: Moisture - Percent Moisture

Lab Sample ID: 490-17776-A-1 DU

Matrix: Solid

Analysis Batch: 53269

•	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Solids	80		81		%		1	20

QC Association Summary

Client: Environmental Enterprise Group

Project/Site: EEG Default

TestAmerica Job ID: 490-17778-1 SDG: Laurel Bay Housing Project

GC/MS VOA

P	re	n	R	af	hel	h٠	52	654
			u	a			JE	\mathbf{u}

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-17581-A-54-D MS	Matrix Spike	Total/NA	Solid	5035	
490-17581-A-54-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 53261

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-17778-1	380 Aspen	Total/NA	Solid	5035	
490-17778-6	635 Dahlia-2	Total/NA	Solid	5035	

Prep Batch: 53264

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-17778-1	380 Aspen	Total/NA	Solid	5035	
490-17778-2	646 Dahlia-a	Total/NA	Solid	5035	
490-17778-3	634 Dahlia	Total/NA	Solid	5035	
490-17778-4	629 Dahlia	Total/NA	Solid	5035	
490-17778-5	635 Dahlia-1	Total/NA	Solid	5035	
490-17778-6	635 Dahlia-2	Total/NA	Solid	5035	
490-17778-7	628 Dahlia	Total/NA	Solid	5035	

Analysis Batch: 53895

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-17581-A-54-D MS	Matrix Spike	Total/NA	Solid	8260B	52654
490-17581-A-54-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B	52654
490-17778-1	380 Aspen	Total/NA	Solid	8260B	53264
490-17778-2	646 Dahlia-a	Total/NA	Solid	8260B	53264
LCS 490-53895/3	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 490-53895/4	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 490-53895/6	Method Blank	Total/NA	Solid	8260B	
MB 490-53895/7	Method Blank	Total/NA	Solid	8260B	

Analysis Batch: 54052

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-17778-3	634 Dahlia	Total/NA	Solid	8260B	53264
490-17778-4	629 Dahlia	Total/NA	Solid	8260B	53264
490-17778-5	635 Dahlia-1	Total/NA	Solid	8260B	53264
490-17778-6	635 Dahlia-2	Total/NA	Solid	8260B	53264
490-17778-7	628 Dahlia	Total/NA	Solid	8260B	53264
LCS 490-54052/3	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 490-54052/4	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 490-54052/6	Method Blank	Total/NA	Solid	8260B	

Analysis Batch: 54278

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-17778-1	380 Aspen	Total/NA	Solid	8260B	53261
490-17778-6	635 Dahlia-2	Total/NA	Solid	8260B	53261
LCS 490-54278/3	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 490-54278/4	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 490-54278/7	Method Blank	Total/NA	Solid	8260B	

QC Association Summary

Client: Environmental Enterprise Group

Project/Site: EEG Default

TestAmerica Job ID: 490-17778-1 SDG: Laurel Bay Housing Project

GC/MS Semi VOA

Prep Batch: 53313

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-17778-1	380 Aspen	Total/NA	Solid	3550C	
490-17778-1 MS	380 Aspen	Total/NA	Solid	3550C	
490-17778-1 MSD	380 Aspen	Total/NA	Solid	3550C	
490-17778-2	646 Dahlia-a	Total/NA	Solid	3550C	
490-17778-3	634 Dahlia	Total/NA	Solid	3550C	
490-17778-4	629 Dahlia	Total/NA	Solid	3550C	
490-17778-5	635 Dahlia-1	Total/NA	Solid	3550C	
490-17778-6	635 Dahlia-2	Total/NA	Solid	3550C	
490-17778-7	628 Dahlia	Total/NA	Solid	3550C	
LCS 490-53313/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 490-53313/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 53348

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-17778-1	380 Aspen	Total/NA	Solid	8270D	53313
490-17778-1 MS	380 Aspen	Total/NA	Solid	8270D	53313
490-17778-1 MSD	380 Aspen	Total/NA	Solid	8270D	53313
490-17778-2	646 Dahlia-a	Total/NA	Solid	8270D	53313
490-17778-3	634 Dahlia	Total/NA	Solid	8270D	53313
490-17778-4	629 Dahlia	Total/NA	Solid	8270D	53313
490-17778-5	635 Dahlia-1	Total/NA	Solid	8270D	53313
490-17778-7	628 Dahlia	Total/NA	Solid	8270D	53313
LCS 490-53313/2-A	Lab Control Sample	Total/NA	Solid	8270D	53313
MB 490-53313/1-A	Method Blank	Total/NA	Solid	8270D	53313

Analysis Batch: 53658

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-17778-1	380 Aspen	Total/NA	Solid	8270D	53313
490-17778-2	646 Dahlia-a	Total/NA	Solid	8270D	53313
490-17778-6	635 Dahlia-2	Total/NA	Solid	8270D	53313

General Chemistry

Analysis Batch: 53269

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-17776-A-1 DU	Duplicate	Total/NA	Solid	Moisture	
490-17778-1	380 Aspen	Total/NA	Solid	Moisture	
490-17778-2	646 Dahlia-a	Total/NA	Solid	Moisture	
490-17778-3	634 Dahlia	Total/NA	Solid	Moisture	
490-17778-4	629 Dahlia	Total/NA	Solid	Moisture	
490-17778-5	635 Dahlia-1	Total/NA	Solid	Moisture	
490-17778-6	635 Dahlia-2	Total/NA	Solid	Moisture	
490-17778-7	628 Dahlia	Total/NA	Solid	Moisture	

Lab Chronicle

Client: Environmental Enterprise Group

Project/Site: EEG Default

TestAmerica Job ID: 490-17778-1 SDG: Laurel Bay Housing Project

Lab Sample ID: 490-17778-1

Matrix: Solid

Percent Solids: 77.5

Client Sample ID: 380 Asper
Date Collected: 01/14/13 14:15
Date Received: 01/23/13 08:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			53264	01/24/13 07:28	ML	TAL NSH
Total/NA	Analysis	8260B		1	53895	01/26/13 19:28	AF	TAL NSH
Total/NA	Prep	5035			53261	01/24/13 07:26	ML	TALNSH
Total/NA	Analysis	8260B		35	54278	01/29/13 09:56	AF	TAL NSH
Total/NA	Prep	3550C			53313	01/24/13 08:53	AK	TAL NSH
Total/NA	Analysis	8270D		1	53348	01/24/13 18:58	KP	TAL NSH
Total/NA	Analysis	8270D		5	53658	01/25/13 18:27	KP	TAL NSH
Total/NA	Analysis	Moisture		1	53269	01/24/13 07:37	RS	TAL NSH

Client Sample ID: 646 Dahlia-a

Date Collected: 01/15/13 13:50 Date Received: 01/23/13 08:20 Lab Sample ID: 490-17778-2

Matrix: Solid

Percent Solids: 82.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			53264	01/24/13 07:28	ML	TAL NSH
Total/NA	Analysis	8260B		1	53895	01/26/13 19:58	AF	TAL NSH
Total/NA	Prep	3550C			53313	01/24/13 08:53	AK	TAL NSH
Total/NA	Analysis	8270D		3	53348	01/24/13 20:05	KP	TAL NSH
Total/NA	Analysis	8270D		5	53658	01/25/13 18:50	KP	TAL NSH
Total/NA	Analysis	Moisture		t	53269	01/24/13 07:37	RS	TAL NSH

Client Sample ID: 634 Dahlia

Date Collected: 01/16/13 11:20 Date Received: 01/23/13 08:20 Lab Sample ID: 490-17778-3 Matrix: Solid

Percent Solids: 95.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			53264	01/24/13 07:28	ML	TAL NSH
Total/NA	Analysis	8260B		1	54052	01/28/13 08:48	AF	TAL NSH
Total/NA	Prep	3550C			53313	01/24/13 08:53	AK	TAL NSH
Total/NA	Analysis	8270D		4	53348	01/24/13 20:28	KP	TAL NSH
Total/NA	Analysis	Moisture		1	53269	01/24/13 07:37	RS	TAL NSH

Client Sample ID: 629 Dahlia

Date Collected: 01/17/13 11:50

Date Received: 01/23/13 08:20

Lab Sample ID: 490-17778-4

Matrix: Solid

Percent Solids: 93.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			53264	01/24/13 07:28	ML	TAL NSH
Total/NA	Analysis	8260B			54052	01/28/13 09:19	AF	TAL NSH
Total/NA	Prep	3550C			53313	01/24/13 08:53	AK	TAL NSH
Total/NA	Analysis	8270D		1	53348	01/24/13 20:51	KP	TAL NSH
Total/NA	Analysis	Moisture		1	53269	01/24/13 07:37	RS	TAL NSH

Lab Chronicle

Client: Environmental Enterprise Group

Project/Site: EEG Default

TestAmerica Job ID: 490-17778-1 SDG: Laurel Bay Housing Project

ple ID: 490-17778-5

Matrix: Solid

Percent Solids: 89.0

Client Sample ID: 635 Dahlia-1	Lab Samp
Date Collected: 01/15/13 13:45	

Date Received: 01/23/13 08:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			53264	01/24/13 07:28	ML	TAL NSH
Total/NA	Analysis	8260B		3	54052	01/28/13 09:49	AF	TAL NSH
Total/NA	Prep	3550C			53313	01/24/13 08:53	AK	TAL NSH
Total/NA	Analysis	8270D		4	53348	01/24/13 21:13	KP	TAL NSH
Total/NA	Analysis	Moisture		1	53269	01/24/13 07:37	RS	TAL NSH

Client Sample ID: 635 Dahlia-2

Date Collected: 01/16/13 11:45 Date Received: 01/23/13 08:20

Lab Sample ID: 490-17778-6

Matrix: Solid

Percent Solids: 84.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			53264	01/24/13 07:28	ML	TAL NSH
Total/NA	Analysis	8260B		3	54052	01/28/13 10:19	AF	TAL NSH
Total/NA	Prep	5035			53261	01/24/13 07:26	ML	TAL NSH
Total/NA	Analysis	8260B		7	54278	01/29/13 10:26	AF	TAL NSH
Total/NA	Prep	3550C			53313	01/24/13 08:53	AK	TAL NSH
Total/NA	Analysis	8270D		5	53658	01/25/13 19:12	KP	TAL NSH
Total/NA	Analysis	Moisture			53269	01/24/13 07:37	RS	TAL NSH

Client Sample ID: 628 Dahlia

Analysis

Date Collected: 01/17/13 13:45 Date Received: 01/23/13 08:20

Lab Sample ID: 490-17778-7 Matrix: Solid

TAL NSH

Percent Solids: 95.7

Batch Batch Dilution Batch Prepared Type Method Run Factor Number or Analyzed Analyst Lab Prep Type 01/24/13 07:28 Total/NA Prep 5035 53264 ML TAL NSH Total/NA Analysis 8260B 54052 01/28/13 10:49 TAL NSH 3550C TAL NSH Total/NA Prep 53313 01/24/13 08:53 AK Total/NA Analysis 8270D 53348 01/24/13 21:57 TAL NSH

Laboratory References:

Total/NA

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Moisture

TestAmerica Nashville

53269

01/24/13 07:37 RS

Method Summary

Client: Environmental Enterprise Group

Project/Site: EEG Default

TestAmerica Job ID: 490-17778-1 SDG: Laurel Bay Housing Project

B

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL NSH
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL NSH
Moisture	Percent Moisture	EPA	TAL NSH

4

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

7

8

D

10

Ð

12

13

Certification Summary

Client: Environmental Enterprise Group

Project/Site: EEG Default

TestAmerica Job ID: 490-17778-1 SDG: Laurel Bay Housing Project

Laboratory: TestAmerica Nashville

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
	ACIL		393	10-30-13
A2LA	ISO/IEC 17025		0453.07	12-31-13
Alabama	State Program	4	41150	05-31-13
Alaska (UST)	State Program	10	UST-087	07-24-13
Arizona	State Program	9	AZ0473	05-05-13
Arkansas DEQ	State Program	6	88-0737	04-25-13
California	NELAP	9	1168CA	10-31-13
Canadian Assoc Lab Accred (CALA)	Canada		3744	03-08-14
Colorado	State Program	8	N/A	02-28-13
Connecticut	State Program	- 1	PH-0220	12-31-13
Florida	NELAP	4	E87358	06-30-13
Ilinois	NELAP	5	200010	12-09-13
owa	State Program	7	131	05-01-14
Kansas	NELAP	7	E-10229	10-31-13
Kentucky (UST)	State Program	4	19	09-15-13
Louisiana	NELAP	6	30613	06-30-13
Maryland	State Program	3	316	03-31-13
Massachusetts	State Program	1	M-TN032	06-30-13
Minnesota	NELAP	5	047-999-345	12-31-13
Mississippi	State Program	4	N/A	06-30-13
Montana (UST)	State Program	8	NA	01-01-15
Nevada	State Program	9	TN00032	07-31-13
New Hampshire	NELAP	1	2963	10-09-13
New Jersey	NELAP	2	TN965	06-30-13
New York	NELAP	2	11342	04-01-13
North Carolina DENR	State Program	4	387	12-31-13
North Dakota	State Program	8	R-146	06-30-13
Ohio VAP	State Program	5	CL0033	01-19-14
Oklahoma	State Program	6	9412	08-31-13
Oregon	NELAP	10	TN200001	04-30-13
Pennsylvania	NELAP	3	68-00585	06-30-13
Rhode Island	State Program	1	LAO00268	12-30-13
South Carolina	State Program	4	84009 (001)	02-28-13
South Carolina	State Program	4	84009 (002)	02-23-14
Fennessee	State Program	4	2008	02-23-14
Texas	NELAP	6	T104704077-09-TX	08-31-13
JSDA	Federal		S-48469	11-02-13
Jtah	NELAP	8	TAN	06-30-13
/irginia	NELAP	3	460152	06-14-13
Vashington	State Program	10	C789	07-19-13
West Virginia DEP	State Program	3	219	02-28-13
Visconsin	State Program	5	998020430	08-31-13
Wyoming (UST)	A2LA	8	453.07	12-31-13

Nashville, TN

COOLER RECEIPT FORM

Cooler Received/Opened On 1/23/2013 @ 0820

1. Tracking # 5.658 (last 4 digits, FedEx)	
Courier: Fedex IR Gun ID 94660220	
2. Temperature of rep. sample or temp blank when opened:	
3. If Item #2 temperature is 0° C or less, was the representative sample or temp blank frozen?	YES NO.NA
4. Were custody seals on outside of cooler?	NONA
If yes, how many and where: (2) Treen+ Back	
5. Were the seals intact, signed, and dated correctly?	YES NONA
6. Were custody papers Inside cooler?	ESNONA
I certify that I opened the cooler and answered questions 1-6 (Intlal)	
7. Were custody seals on containers: YES NO and Intact	YESNO.
Were these signed and dated correctly?	YESNO
8. Packing mat'l used? Subblewrap Clastic bag Peanuts Vermiculite Foam Insert Paper	Other None
9. Cooling process: (ce-pack lce (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	√₽\$NONA
12. Did all container labels and tags agree with custody papers?	₹₽\$NONA
13a. Were VOA vials received?	KESNONA
b. Was there any observable headspace present in any VOA vial?	YESNO NA SOL
14. Was there a Trip Blank in this cooler? YESNA If multiple coolers, sequence	e #
certify that I unloaded the cooler and answered questions 7-14 (intial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	
b. Did the bottle labels indicate that the correct preservatives were used	YESNONA
16. Was residual chlorine present?	YESNO(NA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	
17. Were custody papers properly filled out (Ink, signed, etc)?	YES NO NA
18. Did you sign the custody papers in the approprlate place?	YESNONA
19. Were correct containers used for the analysis requested?	SNONA
20. Was sufficient amount of sample sent in each container?	ESNONA
I certify that I entered this project Into LIMS and answered questions 17-20 intial	
I certify that I attached a label with the unique LIMS number to each container (Intlat)	

21. Were there Non-Conformance issues at login? YES. (NO) Was a NCM generated? YES. (NO)..#_

P3 1243

1462 ž o_N elube io8-eng) TAT HRUF X8X Yes 3.5. Compliance Monitoring? methods, is this work being conducted for regulatory purposes? Enforcement Action? To assist us in using the proper analytical Temperature Upon Receipt. VOCs Free of Headspace? Anatyze For Project ID: Laurel Bay Housing Project Laboratory Comments: Site State: SC TA Quote #: Q0728 - HA9 > PO#: Project #: X X E 0220 BLEX + Napth - 82606 FEBEX Oluer (specify): 108 1-2333 -579.040, Sludge Darke Pate Drinking Weter Phone: 615-726-0177 Toll Free: 800-765-0990 Fax: 645-725-3460 Groundwater Other (Specify) MARAINES None (Black Label) CAR H₂SO, Glass(Yellow Label) 843 Method of Shirment (leds Lagnaro) HOsM RUCE FaxNo.: HNO, (Red Label) 100 Field Filtered Composite TestAmerica Nashville Division
2960 Foster Creighton
2960 Foster Creighton
Nashville, TN 37204 Project Manager: Tom McElwee email: mcelwee@eeginc.net CS 18 50 Time Tine 1255td 7 7 No. of Containers Shipped 7 120 13 1350 Time Sampled Address: 10179 Highway 78 CRy/State/Zip: Ladson, SC 29456 Client Name/Account#: EEG - SBG # 2449 age Page (MY)S Telephone Number: 843.412.2097 **Даға Samp**led 1/14/1 Sampler Name: (Print) Sampler Signature: Joh lima ンタイパチ DAKLIA HSDRN imple ID / Description Special Instructions: 1034 380 949

4.5% 2 2 elube no 8- mg) TAT H8UF 88 Xes 25.50 Compliance Monitoring? methods, is this work being conducted for To assist us in using the proper analytical Enforcement Action? Temperature Upon Receipt: VOCs Free of Headspace? Arralyze For Project ID: Laurel Bay Housing Project regulatory purposes? 00 Site State: SC PO#: TA Quote #: Q0728 - HA9 Project 8: 0680 BTEX + Napth - 82606 FEDEX Other (specify): 108 1-4318 egbulg Darte Date 0401 Drinking Water 138 Phone: 615-726-0177 Toll Free: 800-765-0980 Fax: 615-726-3404 Other (Specify) Matter . . C. Fax N 843-87 Method of Shipment HSO Hashe (Yellow Label) (NeOH (Orange Label) eceived by TestAme HNO₃ (Red Label) Fragit 90] Received by. Field Filtered Composite Project Manager: Tom McEwee email: most-wee@eveginc.net 0900 2960 Foster Creighton Nashville, TN 37204 Grab Firme TestAmerica Mashville Division 7 No. of Containers Shipped 7 13 1345 11113 1145 1345 Time Sampled Address: 10179 Highway 78 Client Name/Account#: EEG - SBG # 2449 City/State/Zip: Ladson, SC 29456 115/13 THE LEADER IN ENVIRONMENTAL TESTING Telephone Number: 843.412.2097 Date Sam and Antipler Name; (Print) Sampler Signature. -DALlia-DAKI. A DahliA-C C Sample ID / Description Special Instructions 200

Loc: 490 17778

752ct2

Login Sample Receipt Checklist

Client: Environmental Enterprise Group

Job Number: 490-17778-1

SDG Number: Laurel Bay Housing Project

List Source: TestAmerica Nashville

Login Number: 17778 List Number: 1

Creator: Huckaba, Jimmy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ATTACHMENT A

NON-HAZARDOUS MANIFEST

RIDGELAND, SC 29936 11. Description of Waste Materials a. HEATING OIL TANK FILLED WITH SAND WM Profile # 102655SC b. WM Profile #	
MCAS BEAUFORT LAUREL BAY HOUSING BEAUFORT, SC 29904 4. Generator's Phone 843-879-0411 5. Transporter 1 Company Name 6. US EPA ID Number C. State Transporter's ID D. Transporter's Phone 7. Transporter 2 Company Name 8. US EPA ID Number E. State Transporter's ID F. Transporter's Phone 9. Designated Facility Name and Site Address HICKORY HILL LANDFILL 2621 LOW COUNTRY DRIVE RIDGELAND, SC 29936 11. Description of Waste Materials 12. Containers No. Type Quantity Wt./Vol. I. Mis a. HEATING OIL TANK FILLED WITH SAND WM Profile # 102655SC b.	B7-4643
MCAS BEAUFORT LAUREL BAY HOUSING BEAUFORT, SC 29904 4. Generator's Phone 843-879-0411 5. Transporter 1 Company Name 6. US EPA ID Number C. State Transporter's ID D. Transporter's Phone 7. Transporter 2 Company Name 8. US EPA ID Number E. State Transporter's Phone 9. Designated Facility Name and Site Address HICKORY HILL LANDFILL 2621 LOW COUNTRY DRIVE RIDGELAND, SC 29936 11. Description of Waste Materials a. HEATING OIL TANK FILLED WITH SAND WM Profile # 102655SC b. WM Profile #	B7-4643
B. State Generator's II BEAUFORT, SC 29904 4. Generator's Phone 843-879-0411 5. Transporter 1 Company Name 6. US EPA ID Number C. State Transporter's ID D. Transporter's Phone 7. Transporter 2 Company Name 8. US EPA ID Number E. State Transporter's ID F. Transporter's Phone 9. Designated Facility Name and Site Address HICKORY HILL LANDFILL 2621 LOW COUNTRY DRIVE RIDGELAND, SC 29936 11. Description of Waste Materials a. HEATING OIL TANK FILLED WITH SAND WM Profile # 102655SC b. WM Profile #	B7-4643
843-879-0411 5. Transporter 1 Company Name 6. US EPA ID Number 7. Transporter 2 Company Name 8. US EPA ID Number 6. E. State Transporter's ID D. Transporter's Phone 9. Designated Facility Name and Site Address HICKORY HILL LANDFILL 2621 LOW COUNTRY DRIVE RIDGELAND, SC 29936 11. Description of Waste Materials 12. Containers No. Type 13. Total Quantity Wt./vol. WM Profile # 102655SC b. WM Profile #	37-4643
4. Generator's Phone 843-879-0411 5. Transporter 1 Company Name 6. US EPA ID Number C. State Transporter's ID D. Transporter's Phone 7. Transporter 2 Company Name 8. US EPA ID Number E. State Transporter's ID F. Transporter's Phone 9. Designated Facility Name and Site Address HICKORY HILL LANDFILL 2621 LOW COUNTRY DRIVE RIDGELAND, SC 29936 11. Description of Waste Materials a. HEATING OIL TANK FILLED WITH SAND WM Profile # 102655SC b. WM Profile # 102655SC	
5. Transporter 1 Company Name 6. US EPA ID Number C. State Transporter's ID D. Transporter's Phone 7. Transporter 2 Company Name 8. US EPA ID Number E. State Transporter's ID F. Transporter's Phone 9. Designated Facility Name and Site Address HICKORY HILL LANDFILL 2621 LOW COUNTRY DRIVE RIDGELAND, SC 29936 11. Description of Waste Materials a. HEATING OIL TANK FILLED WITH SAND WM Profile # 102655SC b. WM Profile #	
C. State Transporter's ID D. Transporter's Phone 7. Transporter 2 Company Name 8. US EPA ID Number E. State Transporter's ID F. Transporter's Phone 9. Designated Facility Name and Site Address HICKORY HILL LANDFILL 2621 LOW COUNTRY DRIVE RIDGELAND, SC 29936 11. Description of Waste Materials a. HEATING OIL TANK FILLED WITH SAND WM Profile # 102655SC b. WM Profile #	
7. Transporter 2 Company Name 8. US EPA ID Number E. State Transporter's ID F. Transporter's Phone 9. Designated Facility Name and Site Address HICKORY HILL LANDFILL 2621 LOW COUNTRY DRIVE RIDGELAND, SC 29936 11. Description of Waste Materials a. HEATING OIL TANK FILLED WITH SAND WM Profile # 102655SC b. WM Profile #	
7. Transporter 2 Company Name 8. US EPA ID Number E. State Transporter's ID F. Transporter's Phone 9. Designated Facility Name and Site Address HICKORY HILL LANDFILL 2621 LOW COUNTRY DRIVE RIDGELAND, SC 29936 11. Description of Waste Materials a. HEATING OIL TANK FILLED WITH SAND WM Profile # 102655SC 8. US EPA ID Number E. State Transporter's ID F. Transporter's Phone G. State Facility ID H. State Facility Phone 843-98 RIDGELAND, SC 29936 12. Containers No. Type Quantity Wt./Vol. No. Type Quantity Wt./Vol. WM Profile # 102655SC	
9. Designated Facility Name and Site Address HICKORY HILL LANDFILL 2621 LOW COUNTRY DRIVE RIDGELAND, SC 29936 11. Description of Waste Materials a. HEATING OIL TANK FILLED WITH SAND WM Profile # 102655SC b. WM Profile #	
9. Designated Facility Name and Site Address HICKORY HILL LANDFILL 2621 LOW COUNTRY DRIVE RIDGELAND, SC 29936 11. Description of Waste Materials a. HEATING OIL TANK FILLED WITH SAND WM Profile # 102655SC 10. US EPA ID Number G. State Facility ID H. State Facility Phone 843-98 12. Containers No. Type Quantity Wt./Vol. 1. Mis	
HICKORY HILL LANDFILL 2621 LOW COUNTRY DRIVE RIDGELAND, SC 29936 11. Description of Waste Materials a. HEATING OIL TANK FILLED WITH SAND WM Profile # 102655SC b. G. State Facility ID H. State Facility Phone 843-98 843-98 12. Containers 13. Total 14. Unit Wt./Vol. 1. Mis No. Type Quantity Wt./Vol. 1. Mis	
2621 LOW COUNTRY DRIVE RIDGELAND, SC 29936 11. Description of Waste Materials a. HEATING OIL TANK FILLED WITH SAND WM Profile # 102655SC b. WM Profile #	
RIDGELAND, SC 29936 11. Description of Waste Materials a. HEATING OIL TANK FILLED WITH SAND WM Profile # 102655SC b. WM Profile #	
11. Description of Waste Materials a. HEATING OIL TANK FILLED WITH SAND WM Profile # 102655SC b. WM Profile #	c. Comments
a. HEATING OIL TANK FILLED WITH SAND WM Profile # 102655SC WM Profile #	c. Comments
a. HEATING OIL TANK FILLED WITH SAND WM Profile # 102655SC WM Profile #	sc. Comments
WM Profile # 102655SC b. WM Profile #	
b. WM Profile #	
b. WM Profile #	
WM Profile #	
	P 18
c.	
WM Profile #	
d.	
WM Profile #	
J. Additional Descriptions for Materials Listed Above K. Disposal Location	
Cell Level	
15. Special Handling Instructions and Additional Information 41917 RARRACU day	_
	5 Coli
	- 001.
Purchase Order # EMERGENCY CONTACT / PHONE NO.:	
16. GENERATOR'S CERTIFICATE:	
I hereby certify that the above-described materials are not hazardous wastes as defined by 40 CFR Part 261 or any applicable state law, have been	fully and
accurately described, classified and packaged and are in proper condition for transportation according to applicable regulations. Printed Name Signature "On behalf of" Month	Day Ye
Spintage of school ?	W 1
17. Transporter 1 Acknowledgement of Receipt of Materials	
Printed Name / Signature 6//// Month	Day Ye
PRAMSHAN FIND	141
18. Transporter 2 Acknowledgement of Receipt of Materials	
Printed Name Signature Month	Day Ye
JAMES Fridu, N Frances Problem - 2	Ly /
V	<u> </u>
19. Certificate of Final Treatment/Disposal	a with all
I certify, on behalf of the above listed treatment facility, that to the best of my knowledge, the above-described waste was managed in compliance applicable laws, regulations, permits and licenses on the dates listed above.	; with all
ZU. Facility Owner or Operator: Certification of receipt of non-hazardous materials covered by this manifest	
	Day Ye
	Day Ye
	Day Ye

Appendix C Regulatory Correspondence

Catherine B. Templeton, Director

Programing and preserving the health of the public and the environment

May 15, 2014

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: No Further Action

Laurel Bay Underground Storage Tank Assessment Reports for:

See attached sheet

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the above referenced Underground Storage Tanks (USTs) Assessment Reports for the addresses listed above. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The Department has reviewed the referenced assessment reports and agrees there is no indication of soil or groundwater contamination on these properties, and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at kriegkm@dhec.sc.gov or 803-898-0255.

Sincerely,

Kent Krieg

Department of Defense Corrective Action Section

Bureau of Land and Waste Management

South Carolina Department of Health and Environmental Control

Cc: Russell Berry (via email)

Craig Ehde (via email)

Catherine B. Templeton, Director

Promosting and protecting the health of the public and the environment

Attachment to:

Krieg to Drawdy Subject: NFA Dated 5/15/2014

Laurel Bay Underground Storage Tank Assessment Reports for: (143 addresses/146 tanks)

212 Balsam	503 Laurel Bay
219 Balsam	508 Laurel Bay
260 Beech Tank 1	510 Laurel Bay
260 Beech Tank 2	523 Laurel Bay
267 Birch	525 Laurel Bay
287 Birch	529 Laurel Bay
302 Ash	533 Laurel Bay
305 Ash	537 Laurel Bay
334 Ash	556 Dahlia
338 Ash Tank 1	557 Dahlia
338 Ash Tank 2	559 Dahlia
361 Aspen	562 Dahlia
371 Aspen	568 Dahlia
372 Aspen Tank 1	581 Aster
372 Aspen Tank 2	582 Aster
375 Aspen	584 Aster
385 Aspen	602 Dahlia
403 Elderberry	607 Dahlia
407 Elderberry	614 Dahlia
411 Elderberry	616 Dahlia
414 Elderberry	619 Dahlia
415 Elderberry	625 Dahlia
421 Elderberry	629 Dahlia
427 Elderberry	631 Dahlia
428 Elderberry	634 Dahlia
431 Elderberry	660 Camellia
455 Elderberry	661 Camellia
484 Laurel Bay	666 Camellia
490 Laurel Bay	669 Camellia
502 Laurel Bay	672 Camellia

Laurel Bay Underground Storage Tank Assessment Reports for: (143 addresses/146 tanks) cont.

674 Camellia	880 Cobia
677 Camellia	890 Cobia
679 Camellia	892 Cobia
686 Camellia	900 Barracuda
690 Camellia	906 Barracuda
698 Abelia	911 Barracuda
700 Bluebell	912 Barracuda
704 Bluebell	917 Barracuda
705 Bluebell	919 Barracuda
708 Bluebell	928 Albacore
710 Bluebell	1024 Foxglove
711 Bluebell	1028 Foxglove
714 Bluebell	1029 Foxglove
715 Bluebell	1038 Iris
726 Bluebell	1049 Gardenia
728 Bluebell	1079 Heather
731 Bluebell	1103 Iris
734 Bluebell	1122 Iris
759 Althea	1136 Iris
761 Althea	1173 Bobwhite
773 Althea	1200 Cardinal
778 Laurel Bay	1221 Cardinal
807 Azalea	1238 Dove
814 Azalea	1241 Dove
815 Azalea	1242 Dove
818 Azalea	1248 Dove
820 Azalea	1262 Dove
821 Azalea	1265 Dove
831 Azalea	1267 Dove
832 Azalea	1289 Eagle
834 Azalea	1298 Eagle
835 Azalea	1300 Eagle
841 Azalea	1303 Eagle
853 Dolphin	1304 Eagle
858 Dolphin	1315 Albatross
869 Cobia	1316 Albatross
874 Cobia	1320 Albatross
875 Cobia	1338 Albatross

Laurel Bay Underground Storage Tank Assessment Reports for: (143 addresses/146 tanks) cont.

1340 Albatross			
1342 Albatross			
1344 Cardinal			
1345 Cardinal		*	
1349 Cardinal			
1355 Cardinal			
1366 Cardinal			
1374 Dove	}		
1375 Dove			
1415 Albatross			